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ABSTRACT
In this paper we study, through a concrete case, the feasi-
bility of using a high-level, general-purpose logic language
in the design and implementation of applications targeting
wearable computers. The case study is a “sound spatializer”
which, given real-time signals for monaural audio and head-
ing, generates stereo sound which appears to come from a
position in space. The use of advanced compile-time trans-
formations and optimizations made it possible to execute
code written in a clear style without efficiency or architec-
tural concerns on the target device, while meeting strict ex-
isting time and memory constraints. The final executable
compares favorably with a similar implementation written
in C. We believe that this case is representative of a wider
class of common pervasive computing applications, and that
the techniques we show here can be put to good use in a
range of scenarios. This points to the possibility of applying
high-level languages, with their associated flexibility, con-
ciseness, ability to be automatically parallelized, sophisti-
cated compile-time tools for analysis and verification, etc.,
to the embedded systems field without paying an unneces-
sary performance penalty.

Categories and Subject Descriptors
D.1.6 [Programming Techniques]: Logic Programming;
D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and Logic Languages; D.3.4 [Program-
ming Languages]: Processors—Compilers, Optimization,
Code Generation; B.1 [Hardware]: Control Structures and
Microprogramming—Microprogram Design Aids

General Terms
Languages, Performance
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1. INTRODUCTION
In recent years software has become truly ubiquitous: a

large part of the functionality of many devices is now pro-
vided by an embedded program, which often implements the
core tasks that such devices perform. This includes from
simple timers in ovens or fuzzy logic based monitoring and
control software in household appliances, to sophisticated
real-time concurrent systems in cars and cell phones. Up-
coming wearable computing applications envision an integra-
tion of such devices even into clothing.

A range of micro-controllers is available for these purposes
which, when compared with the processors currently used in
workstations or laptops, are much less expensive and con-
sume a reduced amount of power (starting at micro-Watts
for the simplest ones). In return such processors have limited
memory (from hundreds of bytes to perhaps a few megabytes
total) and speed (up to at most a few hundred megahertz
clock rates, and with little or no instruction parallelism).
Basically, lower clock rates consume less power and simpler
processors with less storage are cheaper.

As a result of this, frequent requirements on embedded
programs is that they be able to use minimum storage, ex-
ecute few instructions, and meet strict timing constraints,
since all this brings down both cost and power consumption.
The importance of these requirements depends of course on
the domain. Because of these requirements, programs are
often developed in low-level languages including, in many
cases, directly in assembler [30]. Some of those programs are
written on micro-controllers in order to completely minimize
power consumption while others are written using also small,
but more general-purpose computing platforms [15, 17, 22].
In most cases, platform limitations drive the whole develop-
ment cycle, diverting attention from modularity, reusability,
code maintainability, etc.

At the same time, and despite resource and program de-
velopment technology constraints, the functionality imple-
mented by embedded systems is often quite sophisticated.
This can include, even for the smallest devices, non-trivial
matrix operations (as in, e.g., Kalman filters [29], used in
GPS receivers), or intensive, real-time operations on data



streams (including spatialization, as in the digital sound
processing example that we will study in this paper). In
addition, more sophisticated functionality and more auto-
mated operation is always demanded by users. Furthermore,
those systems often face strict correctness requirements be-
cause of the nature of the application or simply because of
the higher cost of fixing bugs once the system is deployed.
In practice, and in order to deal with these conflicting re-
quirements, applications are often coded also in a high-level
or specification language which is used for prototyping and
verification, in addition to the above mentioned low-level
language, which constitutes the implementation. Unfortu-
nately, often no real link between these two codings of the
problem exists.

Coding at a Higher Level
A number of recent proposals make it easier to code stream
processing routines. They are usually based on connecting
processing blocks (available in a library or provided by the
user) using a textual programming language (e.g. [25]) or
visual depictions thereof (e.g. [12]). In many cases their
abstraction level is adequate to use them as specification
languages, but code generation is sometimes not automatic,
or the resulting code needs to be fine-tuned by hand. Data
and control models are often that of a procedural / O.O. lan-
guage, which makes the application of some program anal-
ysis and transformation techniques somewhat challenged.
Domain-specific program transformation techniques exist,
but they have only a limited use in the case of a general
embedded system. We want to note that defining process-
ing blocks and applying domain-specific transformations is
in principle possible for languages of any type and level.

In contrast, the availability of optimizing technology for
high-level languages makes their direct use to implement
(and not just to specify and to prototype) an attractive al-
ternative. First, using high-level languages makes it easier
to write better programs, with fewer errors, in less time, and
with less effort. Problems can be formulated at a higher level
of abstraction and much of the low-level detail that must be
dealt with when using, e.g., C or assembler (such as manual
memory management, ensuring safe typing, complex data
structure management, etc.), which complicate and obfus-
cate the coding of algorithms, are taken care of automat-
ically. These languages also make it easier to detect any
remaining bugs and also to verify the correctness of pro-
grams automatically. Finally, high-level languages are also
useful in the context of the general trend in processor de-
sign towards multi-core chips. Dual processor designs (with
four threads total) are present already in mainstream lap-
tops and the expectations are to double the number of cores
and threads every two years at fixed cost. Since the mo-
tivation behind these multi-core designs is precisely to gain
performance while keeping resource consumption down, this
trend is also likely to hit the micro-controller arena. Paral-
lelized programs will be required to exploit the performance
that the chip can deliver, and the parallelization task will
add to the burden on the programmer. High-level languages
are relevant in this context because they have been shown
to be easier to parallelize automatically [8].

The challenge in using high-level languages in embedded
and wearable devices is to be able to generate automati-
cally executables that are as efficient as required by the plat-
form (with memory, speed, and energy consumption close to

hand-coded low-level implementations). A particular chal-
lenge is to achieve this even if numeric or data-intensive
computations are involved. While some interesting work has
been done regarding the use functional programs in embed-
ded systems [19, 28], the use of (constraint) logic program-
ming (CLP) systems in this context has received compar-
atively little attention. CLP, and, in particular, the avail-
ability of logical variables, search, and constraints in a pro-
gramming language can be attractive because these features
can make it easier to provide sophisticated problem solving,
optimization, and reasoning capabilities in devices. This is
in line with the demands for higher and more automated
functionality from users. The purpose of this paper is to
investigate for a particular case study (a sound spatializer
embedded in a wearable computer) the feasibility of coding
it using a very high level, multiparadigm programming sys-
tem supporting predicates, logical variables, dynamic typ-
ing, search, and constraints in combination with functions,
higher order, objects, etc. (in particular, the Ciao system [4,
9, 10]).

However, the point of the paper is not to use all these
capabilities extensively1 but instead to study whether cur-
rent state of the art tools for compile-time analysis, verifica-
tion, specialization, and low-level optimization are powerful
enough to optimize away the default functionality available
in such a rich language, including all its libraries, for a pro-
gram such as the spatializer which only needs a fraction
of them. This will require optimizing away all the over-
head needed for supporting backtracking, full unification,
tagged values, infinite precision arithmetic, etc., which are
present by default in the language for program sections that
do not need these features and see whether it is possible to
produce in this way executables for the wearable computer
that are competitive in terms of speed, memory consump-
tion, etc., when compared to a solution in a low-level lan-
guage (in our case, C). This presents challenges that, while
having some similarities, are also different for example from
those which appear when optimizing programs written in
other languages: dealing with logical variables and argument
modes (i.e., procedure arguments are not known a priori to
be input or output), dealing with backtracking and multiple
solutions, eliminating dynamic typing (when compared to
strongly typed languages), etc.

A Concrete Problem and its Motivation
The case study we chose is a stylized (but fully functional)
version of a real wearable computing application (designed
for the new Bristol CyberJacket) in which a set of virtual
sounds are projected into a physical space. The user ex-
periences these soundscapes through a set of headphones
attached to the wearable computer (which has limited avail-
able power). An example of the use of such a sound spatial-
ization device is a “talking museum” where any object, from
the actual exhibits to the walls or doors of the rooms, can
appear to be talking to the visitor. A compass is fixed on the
user headphones which provides information on head orien-
tation. The wearable computer is also aware of the user’s
location, through GPS for outdoor locations and through an

1A brief account of how CLP characteristics can be of use to
define and implement processes on streams appears in [24].
Our work is complementary in that we do not deal with how
to define and compose basic building blocks, but rather on
how to optimize them.



Figure 1: Sound spatializer prototype, with Gum-
stix (bottom left) and compass (right) attached to
headphone.

ultrasonic positioning system [15] for indoor installations.
With these two sources of information the wearable device
can determine where a sound should be positioned relative
to the user. By calculating the angle at which the sound
is with respect to the head, the delay that the sound will
experience at each ear can be calculated, and this allows
spatializing the sound [2]. For the sake of simplicity, and
since we want to show actual code, we will present a version
in which position is not dealt with, and only sound direction
is taken into account.

This concrete case study was selected because of its char-
acteristic nature: it requires core functionality present in
many wearable computing applications. Handling streams
of data such as audio and video and collections of positions
is frequent in pervasive and wearable systems. In many
common scenarios one or more sensors will produce data
streams to be received and used by an actuator. These sen-
sors can generate data at different, unrelated, but generally
fixed, and sometimes very high, rates. Additionally, this
case does not belong to the restricted class of synchronous
systems and the operation (and, therefore, time) of some
of the actuators depend on the particular data coming in.
Therefore, this case study exemplifies a family of programs
to which techniques similar to those we will show here can
be applied. Very often (including, for example, our case)
these problems have, in addition to resource constraints,
hard real-time constraints where there are exact deadlines
within the system. Of course the objective is to be able
to support, in addition to such lower-level data integration
tasks, higher-level functionality. But the point of the study
is to see if the lower-level tasks can be handled efficiently
enough, since the suitability of the programming language
used for the higher-level tasks is taken for granted.

2. THE SOUND SPATIALIZER
The problem we focus on is spatializing sound in real time

by processing a monaural stream into a stereo one so that the
sound appears to come from a position in space when played
through a set of headphones. Angle information comes from
a compass mounted on the headphones. When the head
turns, the compass will register a change in heading and the
spatialization unit should change accordingly the direction
from which the sound seems to originate to create the il-
lusion that it remains fixed at a certain spacial point. Our
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Figure 2: Sound samples reaching the ears.

fully functional prototype has a small processor board, com-
pass, and battery, all integrated on a pair of headphones (see
Figure 1). The sound stream is a series of samples (16-bit
integers, coming either from some external source or from
flash memory) and the compass data is read as floating-point
numbers measuring the heading in degrees relative to North.

We will assume that signals are delivered at a priori known
rates, and we will apply analysis and optimization tools
in order to reduce the resources (processor cycles, mainly)
needed to deliver sound in a timely manner. We want to,
at least, be able to execute spatialization in real time on
a small processor (described in Section 2.3). Any gains be-
yond real-time execution will allow us to lower the clock rate
of the processor, which reduces power consumption, in turn
increasing battery life. In the following subsections we will
discuss the requirements in detail.

2.1 Sound Spatialization Basics
Figure 2 sketches how the ear localizes sound emanating

from some point in space. When the head does not face
the sound source, sound waves travel a different distance to
each ear (DL and DR, respectively). Therefore the left and
right ears receive the same sound with a slight phase shift,
in the order of a millisecond, determined on the basis of the
difference DL−DR. This enables the brain to determine the
direction of the sound. Calculating that shift is the starting
point for spatialization, as each earphone is to output one
stream of sound samples, which is in turn a possibly delayed
copy of the initial sound stream. The absolute distances to
the sound sources can also be used to modify the volume of
the sound, although in practice attenuation information is
hardly used by the brain when determining the source of a
sound. DL −DR obviously depends on the angle C and the
size of the head.

2.2 Sound Quality and Spatial Localization
High sampling rates are needed to model small head move-

ments. A relative displacement of 3.43 mm. corresponds to a
difference of 10 µs, which needs a sampling rate of 100 KHz.
The higher the sampling rate, the better the spatialization,
but the more processing is required: there is a trade-off be-
tween quality of spatialization and processing power.

One of the requirements of the final application is that
CD-quality sound has to be produced, i.e., 44,100 16-bit
samples per second (sps), which can model a relative dis-
placement between ears of about 7.5 mm. (a rotation of 2



degrees.) Our program should therefore be able to process
44,100 16-bit sps and deliver 88,200 16-bit sps (on the two
output channels). Concurrently, data from the compass has
to be read and used to produce the sound streams.

2.3 Hardware Characteristics of the Platform
The target architecture is modest in comparison with mod-

ern desktops or laptops: it is a Gumstix board equipped with
a 200MHz XScale processor, 64Mb of RAM and 4Mb of flash
memory, which acts as permanent storage, and running a
version or Linux (see http://www.gumstix.com/ for more
information). The Gumstix board is around 25 times slower
(depending on the application, of course) than a 1.5GHz
SpeedStep Centrino, at a fraction of the power usage. Mem-
ory and storage limitations are obviously significant and
relevant to our application, since we want to run a non-
terminating process, and thus garbage collection is critical.

2.4 Hard Real-Time
A stereo sample should ideally be generated every 22 µs

(1/44,100), as input samples arrive. In practice, sound buffers
require blocks (typically of 256 samples) to be written to
the sound card. Thus we are required to produce a block
of sound samples every 6 ms. Two issues can prevent us
from meeting this hard real-time deadline: process schedul-
ing may swap out our program for more than 6 ms. and
executions of the garbage collector could take more than
that.

The former can be worked around, if necessary, by switch-
ing to some form of real-time Linux. However, if fewer pro-
cessor cycles are needed by the application (our goal), it will
be less likely to be affected by the O.S. scheduling. In our
case this proved not to be a problem in the end.

The latter could hinder the use of high-level languages, as
automatic memory management is one of the characteristics
which makes them less error-prone. Some languages have
undergone a careful and interesting revision of the memory
management model and primitives in order to adapt to real-
time requirements [3] (but, arguably losing part of the initial
elegance). In our case recent work in this regard is aimed at
inferring bounds on memory consumption at compile-time
in order to guarantee compliance with memory constraints
without modifying the language. In any case in our concrete
case study the built-in memory management of the (Ciao)
system proved sufficient to not cause any noticeable inter-
ruption in the sound while keeping memory consumption
constant and within reasonable limits.

In both cases, increasing the sound card buffer size would
give more freedom to the application. However, this cre-
ates a lag between the compass movements and the sound
emission which would render the application unacceptably
sluggish and destroy the illusion of spatialization.

2.5 Compass and Concurrency
Reading the compass data (which is done from a serial

interface) may take an unknown amount of time, because
due to limitations of the hardware data may be corrupted.
In order not to block or obfuscate the rest of the applica-
tion code, a separate thread is started which asynchronously
reads data from the compass and posts it for the main pro-
gram. Communication is performed via an atomically up-
datable, concurrent dynamic database [5]. This isolates low-
level details of the compass from the rest of the program.

mono := new InputPeriodicStream(sound sps);
direction := new InputPeriodicStream(compass sps);
stereo := new OutputPeriodicStream(sound sps);
while (true) do

state = f (mono.current(),
direction.current(),
state);

stereo.output(state);
end

Figure 3: Single-loop algorithm for the spatializer.

mono := new InputPeriodicStream(sound sps);
direction := new InputPeriodicStream(compass sps);
stereo := new OutputPeriodicStream(sound sps);
while (true) do

state := f c(direction.current(), mono.current(), state);
samp sound := sound sps/compass sps;
while (samp sound > 0) do

state := f m(mono.current(), state);
stereo.output(state);
samp sound := samp sound− 1;

end
end

Figure 4: A nested-loop sound spatializer.

However, it makes it necessary for the analysis tools to un-
derstand this communication by giving them an appropriate
description. Ciao includes an assertion language which was
used to annotate the interface to the compass (Section 4.2)
appropriately.

Note that the scheduling is handled by the Gumstix op-
erating system. In other scenarios, CLP-based tools have
shown their usefulness at precomputing feasible schedulings
using system specifications written as logic programs which
are then automatically specialized to reduce or eliminate
scheduling overhead [14].

3. PROGRAM CODE AND SOURCE-LEVEL
TRANSFORMATIONS

3.1 Naive Implementation
A naive implementation of the sound spatialization algo-

rithm is shown in Figure 3. A function f takes the current
samples of the sound stream and the direction stream, and
produces a stereo sample. We encapsulate knowledge about
when to skip samples and any history needed in a separate
object “state,” making f a pure function. The three stream
objects all have preset periodicities and are initialized with
their expected sampling rates.

This code is naive in that inside the function f one needs
to perform trigonometric functions, but these only need to
be executed once every compass poll (in our case, once every
4,410 sound samples instead of every sample). In general, a
function f that operates on n inputs s0, s1, . . . , sn−1 can be
projected onto a series of functions f0, . . . , fn−1 such that

f(s0, s1, . . . , sn−1) = f0(s0, f1(s1, . . . fn−1(sn−1) . . .))

If the si are ordered according to their update rates so that
s0 has the fastest one and sn−1 has the slowest one, the
initial program can be rewritten to save the results of func-
tion applications by computing fn−1(sn−1) in the outer loop
(with the lowest frequency) and proceeding inwards across
nested loops until f0(s0, ·) is computed in the innermost



spatialize(SamplesRemaining, SampleL, SampleR, CurrSkip):-
new_sample_cycle(SamplesRemaining, NewCycle,

CurrSkip, NewSkip,
SampleL, SampleR,
NewSampleL, NewSampleR),

new_sample(NewSampleR, R, RestSampleRight),
new_sample(NewSampleL, L, RestSampleLeft),
play_sample(R, L),
spatialize(NewCycle, RestSampleLeft,

RestSampleRight, NewSkip).

new_sample_cycle(0, ~audio_per_compass, CurrSkip,
NewSkip, SL, SR, NSL, NSR):-

find_skip(~read_compass, NewSkip),
skip(NewSkip - CurrSkip, SL, SR, NSL, NSR).

new_sample_cycle(Cycle, Cycle - 1,
Sk, Sk, SL, SR, SL, SR):- Cycle > 0.

new_sample([Sample|Rest], Sample, Rest):-
var(Sample) -> read_sample(Sample) ; true.

Figure 5: Main loop for the sound spatializer read-
ing from a compass.

loop. Note that in our example code we only deal with the
case in which the two frequencies divide each other. This is
not the case for arbitrary sensors.

The code for the sound spatializer, according to this de-
composition, is shown in Figure 4. The function f has been
decomposed into fm and fc, and two loops have been cre-
ated. The outer loop computes fc when a new compass
signal is available, whereas the inner loop applies fm at a
higher frequency. More efficiency is attained at the cost of
a slightly more complex code (which has however a clear
structure) and the decomposition of f .

3.2 High-Level Code for the Sound Spatializer
To go from the schematic code to a full implementation

in a low-level imperative language requires quite a bit of
coding where, e.g., memory management (allocation and
management of buffers), data types and sizes, explicit syn-
chronization, etc. need to be taken into account. Given our
objectives, instead we wrote a complete sound spatializer
in Ciao whose actual core code is shown in Figure 5 (we do
leave out however for brevity some low-level details that deal
with obtaining compass data and sending audio data, which
were notwithstanding fully implemented in the code which
was benchmarked in this paper). Note that while the code
has of course to deal with some low-level details, such as
actually reading stream information and outputting sounds,
there are many others (such as internal buffer information,
types and precision of variables, etc.) which do not need to
be explicitly stated.

A Note on Syntax: Ciao allows the use of functional no-
tation with no execution time penalty [6]. The prefix op-
erator ~ enables the use of a predicate as a function by
making its last argument correspond to the function result.
Hence, the goal ?- append([1], [a], R). can be written
as ?- R = ~append([1], [a]). Predicates can also be de-
fined in functional syntax, by using := instead of :- (Fig-
ure 6). This assumes that the last argument will represent
the function result. Arithmetic expressions are also trans-
lated.

The sound stream is represented as an open-ended (in-
complete), unbound-length list of samples (of some opaque
type) which is incrementally instantiated as more samples

sound_sps := 44100. % Samples per second

compass_sps := 10. % Samples per second

sound_speed := 343. % Meters

head_radius := 0.1. % Meters

pi := 3.141592.

audio_per_compass :=

integer(~sound_sps / ~compass_sps).

samples_per_meter :=

~sound_sps / ~sound_speed.

ear_dif(Angle) :=

~head_radius * sin((Angle * ~pi) / 180).

find_skip(Angle) :=

round(~samples_per_meter * 2 * ~ear_dif(Angle)).

Figure 6: Physical model in the sound spatializer.

are needed. This list is held in memory and the unnecessary
items (the samples which have already reached the farthest
ear and are unreachable in the program) are eventually and
automatically deallocated.

On the other hand, the compass is explicitly polled (this
is the functionality offered by the hardware) by a separate
thread and communicated through the predicate read com-

pass/1 which returns the latest read value. Based on it,
find skip/2 determines the current difference (in number
of samples) between the left and the right ear. This is used
by skip/6 which returns new sample lists (which are, at
the virtual machine level, pointers to the initial, monaural
sample list) for the left and right channels.

The code in Figure 6 represents physical units (such as the
speed of sound in the air) and laws (e.g., the amount of space
corresponding to every sample, depending on the sampling
frequency) or parameters defining particular scenarios (such
as the distance between ears).

We evaluated the different stages of optimization of the
sound spatializer by processing a 120-second track while
sampling the compass 10 times per second, using both the
original version and an automatically specialized version
(Section 3.4). Assessment is based on measuring the total
processing time required and comparing it with the track
duration, which indicates how well the bandwidth can be
sustained by telling us how busy the processor is. We also
recorded whether there were any artifacts such as clicks and
silences. Their presence would reveal issues with garbage
collection or swapping. The results are summarized in Ta-
ble 1 where scenarios which generated acceptable sound are
marked in boldface.

The code in Figures 5 and 6 can be compiled to bytecode
and it can deliver spatialized sound with the required quality
in a modern desktop or laptop computer, while responding
in real time to the signals received from a compass. How-
ever it falls short in our target platform: generating stereo
samples for a 120-second track takes 115.95 seconds, which
means the processor is busy 96.6% (= 115.95

120
× 100) of the

time (Table 1). The remaining processor time is not enough
to cope with the rest of the O.S. tasks without introducing
noticeable clicks. To improve this situation we take advan-
tage of the amenability of high-level languages to advanced
program analysis and transformation in order to produce
better executables without changing the original code. In



Non-Specialized Specialized
Compilation mode i686 Gumstix i686 Gumstix

secs. secs. Utilization secs. secs. Utilization
Bytecode 4.70 115.95 96.6% 3.91 103.49 86.2%
Compiling to C 3.87 98.08 81.7% 3.36 88.27 73.6%
Id. + semidet 3.28 92.42 77.0% 2.85 83.74 69.8%
Id. + mode/type annotation 3.00 88.38 73.6% 2.57 79.42 66.2%
Id. + arithmetic 2.90 85.70 71.4% 2.47 78.01 65.0%

Table 1: Speed results and processor utilization for a benchmark with different compilation regimes.

particular we used (i) partial evaluation (to specialize parts
of the program), (ii) abstract-interpretation based compile-
time analysis to ensure that the program will not raise any
run-time exceptions (due to illegal modes, types, etc.) and
to extract information in order to (iii) perform optimizing
compilation to native code (via C) using the information on
modes, types, determinism, and non-failure gathered during
analysis.

3.3 Compile-Time Checking
The aim of compile-time checking is to guarantee stati-

cally that some program will satisfy certain correctness cri-
teria, which in principle may be arbitrary. Static correct-
ness proofs are certainly of utmost practical relevance in sys-
tems of high dependability or where updating the software is
burdensome or costly. However, in most programming lan-
guages today the correctness criterion is type correctness,
and compile-type checking boils down to type checking.

In the case of logic programs, arguments can in princi-
ple be input or output without further restrictions. This
results in a very flexible programming language, where pro-
cedures are reversible. However, it is often the case that
predefined (system) predicates require their arguments to
satisfy certain calling conventions involving both types and
modes (instantiation degree). Failing to satisfy such calling
conventions is considered an error. For example, traditional
Prolog systems check at run-time such calling conventions
and errors are issued if the conventions are violated. In con-
trast to traditional CLP systems, in the Ciao analyzer and
preprocessor, CiaoPP [10], information obtained by static
analysis is used to reason about such calling conventions. To
this end, the system has an assertion language [21] which al-
lows explicitly and precisely stating calling conventions, i.e.,
preconditions for predicates. The Ciao system libraries are
annotated to state pre- and post-conditions for library pred-
icates. Several assertions expressing different pre-conditions
and their associated post-conditions can co-exist for proce-
dures which are multi-directional.

Static analysis in CiaoPP is based on abstract interpreta-
tion [7], and it is thus guaranteed to provide safe approxi-
mations of program behavior. Such safe approximations can
be used in order to prove the absence of violations of a set
of assertions, which can express more properties than just
type coherence, and thus the absence of run-time errors.

For example, in the case of our implementation of the
stream interpreter, we use the system predicate is/2. The
arithmetic library in Ciao contains an assertion of the form:

:- trust pred is(X,Y) : arithexpression(Y) => num(X).

which requires the second argument to is/2 to be an arith-
metic expression (which is a regular type also defined in
the arithmetic library) containing no unbound variables, and

also provides the information that on success the first argu-
ment will be instantiated to a number. Analysis informa-
tion using the eterms [27] abstract domain allows CiaoPP
to guarantee at compile time that the program satisfies the
calling conventions for system predicates (in this example
just is/2) used in the program. Thus, the compiler certifies
that no run-time errors will be produced during the execu-
tion of our code for the stream interpreter. The same ap-
plies to other predicates which access external entities (e.g.,
compass data) and whose behavior was modeled using Ciao
assertions (see Section 4.2).

The user may optionally provide assertions for his/her
own procedures. If available, CiaoPP will try to check at
compile time such assertions. Clearly, the more effort the
user puts into writing assertions, the more guarantees we
have of the program being correct.

3.4 Partially Evaluating the Program
The code in Figure 6 performs repeatedly the same set

of operations, many of them involving constants. While the
part of the main loop dealing with arithmetic is not called
a large number of times (because of the low sampling rate
of the compass), opportunities for partial evaluation to im-
prove execution time certainly exist. Indeed, all the code in
Figure 6 is reduced to a single clause:

find_skip(A,B) :-

C is sin(A*0.017453288889),

B is round(25.94117647058824*C) .

Moreover, the calculations involving constant numerical val-
ues are performed at compile-time and the results propa-
gated to the appropriate places in the program.2 Loops and
other parts of the program are also specialized, but the ef-
fect in those program points is less relevant. Input/output
and other library built-ins are handled since they are appro-
priately annotated with assertions where they are defined.

Partial evaluation by itself gave, on average, speedups
ranging from a factor of 1.15 to 1.2 on an i686 and around
a factor of 1.1 on a Gumstix, when the compass is polled
at 10Hz (see Table 1). On the Gumstix, partial evaluation
decreases the processor utilization to 86.2% —substantially
better than with the non-specialized code.

Although these results are encouraging, specialization by
itself did not increase performance to a level where the spa-
tializer really runs reliably in real-time on our target plat-
form. Therefore, our next step towards gaining efficiency

2The reader may notice that C compilers also evaluate stat-
ically expressions containing constants. The situation is
however different: in our case separate predicates (c.f., func-
tions) are being evaluated statically guided by the calls made
to them. If they were called from elsewhere in the program,
the original definitions would have been kept together with
the specialized versions.



(and, as before, keeping the initial code untouched) was to
optimize away the bytecode interpretation overhead by com-
piling the Ciao program into native code, using progressively
more compile-time information in order to generate code as
optimal as possible.

4. TOWARDS OPTIMIZED NATIVE CODE
Two separate issues affect the performance of the sound

spatializer: the time taken to process each sample, regard-
less of how it is processed, and the time taken to compute
the new delay to be applied to the output streams. The for-
mer concerns mainly data-structure and control compilation
(how the main loop is mapped into the lower-level language,
how data structures are handled, and how data is read from
and written to the streams). The latter is dominated funda-
mentally by costly (at least from the point of view of Ciao)
floating-point arithmetic.

We attacked these problems by compiling to native code
via C, using the schema presented in [16]. As we also wanted
to identify the impact of different technologies in the effi-
ciency of the application, we proceeded stepwise: we initially
used only the information present explicitly in the original
program, and later we used the extensive compile-time in-
formation gathered though global analysis.

4.1 Naive Compilation to Native Code
Compiling to native code without using information about

types, modes, determinism, non-failure, etc. preserves ex-
actly the data structures created when interpreting byte-
code. Memory usage, existence (or not) of choice points,
etc. do not change either, so any improvements in perfor-
mance come mainly from reducing the time used in instruc-
tion fetching within the main virtual machine loop. Better
data locality can help, but access patterns are difficult to
predict and therefore this cannot usually be trusted as a
source of improvement.

Despite the limited speedup that is obtained in the ab-
sence of additional information (Table 1), this was actually
a turning point in our case: the processor utilization in the
Gumstix decreased to 81.7% for the non-specialized program
and to 73.6% for the partially evaluated version. The per-
formance of the former is not enough to give a smooth play-
back; however, the latter is fast enough to play and to poll
the compass at an adequate pace, while supporting some
minimal additional load on the host processor. It is however
not a satisfactory solution yet, as it was easy to produce no-
ticeable interruptions in the playback just by adding a light
load on the Gumstix.

4.2 Types, Modes, Determinism, Non-Failure
One of the tasks that non statically-typed languages have

to perform at runtime is checking types and, for a logic-
based language, also modes. Note that, unlike other declar-
ative languages such as Mercury [23] or Haskell [11], Ciao
programs do not need to include any type, mode, deter-
minism, or non-failure declarations. Mode and determinism
annotations are not needed in functional languages because
all functions produce a single solution and their arguments
are input.

Analysis information can be used to optimize native code
generation in several points. For example, type information
can be used to choose a more efficient, closer to the machine,
representation. If mode information is also available, the

:- true pred new_sample_cycle(A,B,C,D,E,F,G,H)
: (int(A), term(B), int(C), term(D),

term(E), term(F), rt2(G), rt2(H))
=> (int(A), int(B), int(C), int(D),

rt2(E), rt2(F), rt2(G), rt2(H))
+ (is_det, mut_exclusive).

new_sample_cycle(0,4410,C,D,E,F,G,H) :-
find_skip(~read_compass,D),
skip(D-C,E,F,G,H).

new_sample_cycle(A,A-1,C,C,E,F,E,F) :- A > 0.

:- regtype rt2/1.

rt2([A|B]) :- term(A), term(B) .

Figure 7: Part of the information inferred for the
compass program.

overhead involved in parameter passing and unification can
be reduced by, e.g., compiling the latter into simple low-level
assignments, perhaps with trailing. Last, determinism and
non-failure information make it possible to reduce or avoid
the creation of choicepoints since the compiler can know
beforehand that no backtracking will be performed. This is,
of course, only a partial list.

The analyzer we used (CiaoPP) is able to infer automati-
cally a significant amount of information, provided that the
boundaries of the program are well defined. For example,
when there is communication with the outside world and
the type of incoming data is relevant, then this data has to
be described (via assertions in our framework). In our case
study the only external data we need to deal with is that
coming from the compass, since the sound samples them-
selves are treated as opaque data. Data coming from the
compass is always a floating-point number. To reflect this,
we added the following assertion for the read compass/1

predicate

:- trust pred read_compass(X) : var(X) => flt(X).

to the module encapsulating the compass access. This asser-
tion should be read as: “in any call to read compass/1, the
argument should be free when calling the predicate and it will
be instantiated to a floating-point number upon success.” No
other information is needed to infer accurate information re-
garding all the types, modes, and determinism of the whole
program. However, if this information is not provided little
useful information can be inferred and most of the improve-
ments that will be described in the following sections cannot
be achieved. We want to note that in bigger, modular appli-
cations, boundary information is usually provided as part of
the module interfaces (and it may have been automatically
inferred), or it can be generated if all source code, libraries
included, is available.

Figure 7 shows a selection of the information CiaoPP
can deduce for the predicate new_sample_cycle/8. Much
more information on sharing (pointer aliasing) and freeness
(pointer initialization) was produced, which we omit since it
is not instrumental for our case. However, it would be vital
if we were to parallelize the code automatically.
read compass/1, as we discussed previously, performs com-

munication with the concurrent process that reads the com-
pass, and its behavior is modeled with the assertion pre-
viously shown. With this information, the predicate new -

sample cycle/8 is inferred to be deterministic and the clauses
are found to be mutually exclusive (as expressed by the



(is det, mut exclusive) assertion). This means that a
more efficient compilation scheme, which does not produce
superfluous code to handle backtracking, can be used.

Additionally, the open-ended list used to hold the samples
to output is approximated with the type rt2/1, which only
states that the argument is a cons cell. This information,
albeit not complete, is enough for a lower-level compiler to
generate better code which avoids testing at runtime the
type of a parameter.

If determinism and non-failure inference are used, the pro-
cessor utilization is reduced to 77% (for the non-specialized
program, which is now able to generate stereo samples and
poll the compass simultaneously with quite acceptable sound)
and to 69.8% (for the specialized version). If mode (variable
instantiation state at predicate entry and exit) and type in-
ference are also used, the processor utilization gets further
reduced to 73.6% and 66.2% for the non-specialized and spe-
cialized programs, respectively.

4.3 Optimizing Arithmetic Operations
The strategy for compilation to native code used so far

preserves the original data representation of the WAM: data
is still stored in tagged words (i.e., boxed). This does not
incur a big performance penalty in most cases, since C com-
pilers generate efficient code to do the tagging/untagging,
and the overhead is, in general, relatively small in compari-
son with what is done with the data itself.

This overhead is however comparatively large for oper-
ations which are simple enough to be translated to a sin-
gle assembler instruction. Arithmetic operations stand out,
and floating-point arithmetic suffers from an additional over-
head: floating-point numbers are not carried around directly
in a tagged word; rather, the tagged word points to a struc-
ture which holds the floating-point number. Therefore, box-
ing and unboxing a floating-point number are comparatively
costly operations which, in principle, have to be repeated
every time a floating-point operation is performed. Addi-
tionally, keeping floating-point numbers boxed needs more
memory and garbage collection has to be called more often.

Another disadvantage of keeping numerical values in boxed
form is that when compiling to native code via C, the C com-
piler does not see native machine data (e.g., ints, floats,
doubles), since they are encoded inside tagged words. This
makes it difficult for the compiler to apply many useful opti-
mizations (instruction reordering, use of machine registers,
inlining, etc.) devised for more idiomatic C programs.

Unboxing has been studied and applied in functional pro-
gramming [13, 18] with good speedup results. This is helped
in part by the use of strict type systems and the lack of
different instantiation modes. Strict typing (and compul-
sory information about modes and determinism) applies also
to the case for Mercury, which does not need boxing and
unboxing. An interesting related approach is that of [20]
for Haskell, where the kernel language was augmented with
types to denote explicitly unboxed values and the simpli-
fications to remove redundant operations were formalized
as program transformations. However, language differences
and the issues that that work focuses on (strictness, poly-
morphism, etc.) makes applying directly these techniques
difficult in our case.

Unboxing for CLP systems, which are untyped and dy-
namically tagged, has received comparatively little atten-
tion. For example, Aquarius [26] did not perform box-

ing/unboxing, and mainstream CLP systems, such as SICS-
tus, do not use it when compiling to native code. The closest
work is perhaps [1] which proposes a compilation strategy
for the concurrent, committed-choice logic language Janus
which, starting from a program annotated with type and
mode declarations, performs a series of analysis to deter-
mine the best representation of each procedure argument
and to avoid redundant boxing/unboxing operations.

We share in fact some ideas with [1], although the lan-
guages are quite different. Similar type and mode annota-
tions are required, which are inferred automatically in our
case. However, we have to infer also information about de-
terminism and non-failure, which is implicit in the language
design of Janus, as it does not support backtracking or fail-
ure. A similarity with [20] is that we have formulated the so-
lution as a source-to-source transformation on an extended
language which includes boxing and unboxing operations.
The implementation used in our experiments supports un-
boxed representations for some basic, native types and for
temporal variables with a restricted lifetime, in order to en-
sure that there will be no interaction with garbage collection.

Our approach to boxing/unboxing removal works by ex-
posing the code of builtins which inspect word tags. They
typically share a similar structure: perform type checking
on input arguments, unbox values, operate on them, box
output values, and unify with output arguments. Infor-
mally, the process we use to detect and remove unneeded
boxing/unboxing changes is:

1. Unfold builtin definitions to make type checking, un-
boxing, and boxing visible.

2. Make a forward pass to remove redundant unboxing
operations. An abstract state relating boxed variables
with their unboxed version is kept. It is updated with
each unbox operation by adding a pair of linked vari-
ables (corresponding to boxed/unboxed views of the
same entity) and by removing the pair when the ver-
sions become out-of-sync or, for temporal variables,
when they become out of scope. This state is con-
sulted to check for the availability of unboxed versions
of variables when needed.

3. Make a backward pass to remove unnecessary box op-
erations whose result is not used any longer.

Figure 8 sketches how the algorithm behaves for a short
piece of code corresponding to the body of find skip/2

(Section 3.4). The initial code is shown in the box at the
top left. The next box contains the same code after split-
ting arithmetic expressions into basic operations which still
work on boxed data and adding number-creation primitives.
Each of these primitives is later expanded into smaller com-
ponents which either create or disassemble boxed values or
work directly with unboxed numbers.

Dashed lines with arrows relate pairs of unbox / box op-
erations which can be simplified by a forward pass, since the
boxed versions of the variables are not used between them.
Goals marked with c denote checks (coming from builtin
expansion) which are statically known to be true at run-
time, either because of assertions at source level or thanks
to information gathered in the fragment of code being com-
piled. They can be safely removed. Finally, goals marked
with u are marked as unnecessary during the backward
pass because their output value is not used.



u

c

u

float(T2),

float_unbox(T2, U2b),

sin_u(U2b, UC),

float_box(UC, C),

c

u

new_float_u(25.941, U3),

float_box(U3, T3),

float(C),

float_unbox(C, UCb),

float(T3),

float_unbox(T3, U3b),

*_u(U3b, UCb, U4),

float_box(U4, T4),

float(T4),

float_box(UB, B)

float_unbox(T4, U4b),

round_u(U4b, UB),

u

c

c

c

u

new_float_u(0.017, U1),

float_box(U1, T1),

float(A),

float_unbox(A, UA),

float_unbox(T1, U1b),

*_u(UA, U1b, U2),

float_box(U2, T2),

*_u(UA, U1, U2),

float_unbox(A, UA),

new_float_u(0.017, U1),

sin_u(U2, UC),

new_float_u(25.941, U3),

*_u(U3, UC, U4),

round_u(U4, UB),

float_box(UB, B)

new_float(0.017, T1),

*(A, T1, T2),

sin(T2, C),

new_float(25.941, T3),

*(T3, C, T4),

round(T4, B)

C is sin(A*0.017),

B is round(25.941*C)

U1 = 0.017;

U2 = U1 * UA;

UA = float_unbox(A);

double U1;

UC = sin(U2);

U3 = 25.941;

U4 = U3 * UC;

UB = round(U4);

double UA; double U2;

double U3; double U4;

double UB;

double UC;

bind(B, float_box(UB));

explicit box/unbox

built−in unfolding

optimized code

normalized source

schematic C code

Prolog source

C code generation

Figure 8: Unboxing optimization.

The next two stages show the intermediate program af-
ter removal of dead code and, finally, the corresponding C
code. Only one boxing and one unboxing operations (for the
input and output parameters, respectively) are needed, and
intermediate variables have been mapped to C (native) vari-
ables. Additionally, since mode information tells us that the
second argument is always free variable, only a very special-
ized form of unification (the call to bind(), in fact a pointer
assignment with trailing) is needed.

As before, this optimization was applied both to the non-
specialized and to the specialized Ciao program, leading to
some performance gains: the unboxing optimization made
it possible to reduce processor utilization to 71.4% for the
non-specialized program and to 65% when running the spe-
cialized one. In both cases this is enough for the Gumstix
to respond adequately to compass movements, even if there
are several other (non CPU-bound) processes running on it.

5. SUMMARY OF THE EXPERIMENTS
Although we already presented some results in the pre-

vious sections, we will summarize our experiments and put
them in the light of a new scenario we did not discuss before
in order to make the presentation as clear as possible. A
rough classification of the experiments performed, the pro-
cessor utilization, and a pictorial summary of their charac-
teristics, is shown in Figure 9.

5.1 Basic Results
All tests were run on a Gumstix, as commented through-

out the paper, and on a SpeedStep Centrino @ 1.4GHz. Ta-
ble 1 shows performance figures for both. While the input
stream is not infinite, after a few seconds both CPU usage
and memory consumption stabilize, which makes us confi-
dent that the program would be able to run indefinitely.

The original non-specialized program running on a vir-
tual machine is fairly efficient, especially taking into account
that it is written in a style which is very close to a specifica-
tion: buffer sizes are not stated anywhere (they self-adjust

target language

Compilation

(via C)

Native Code

Original

language

Analysis
Specialization

Bytecode
95%

85%

65%

71%

Figure 9: Global view of the experiments.

dynamically), memory management is automatic, etc. But
there is not enough spare time to produce a sustained high
quality sound stream on a Gumstix. A combination of spe-
cialization plus compilation to C, or compilation to C plus
compile-time information, is enough to make the program
deliver acceptable sound. However, the CPU usage in the
Gumstix is still too high and any other activity on the same
board causes audible interferences. It is only when both spe-
cialization plus analysis information are used to compile to
C that other processes can be supported on the same board
without noticeable interferences.

The best version runs, on the Gumstix, 1.5 times faster
than the initial one. The difference is larger for the i686 case,
as the speedup is around 1.9. However, those speedups also
depend on particular scenario characteristics, such as polling
frequencies, and, as we will see, other scenarios can exhibit
very different behaviors.

5.2 Increasing the Sampling Frequency
The optimizations on arithmetic operations affect mainly

a tiny fragment of code which computes the phase shift be-



Compilation mode Non-Spec. Specialized
Bytecode 25.64 14.00
Compiling to C 21.59 11.99
Id. + semidet 19.59 11.53
Id. + modes/types 19.19 11.08
Id. + arithmetic 6.97 3.62

Table 2: Results with a higher compass polling rate.

tween the two ears and which is executed infrequently (10
times per second) with the current compass hardware. A
faster poll rate, or the need to process other signals com-
ing at a higher frequency would require a larger fraction of
processing time to be spent on computing the heading data.

To set up an extreme situation, we have simulated the case
where heading data is provided at the same rate as the audio
data (44,100 Hz). Note that this is the highest polling rate
which makes sense, since a faster rate would actually discard
compass data until the next audio sample is available. Ta-
ble 2 summarizes the results under that assumption for an
i686. In that scenario we measured a 7-fold speedup between
the slowest and the fastest executable. This is indeed a very
good result, and an extrapolation to the Gumstix suggests
that with our current analysis and compilation technology
the software running on the Gumstix would be very close to
supporting compass sampling at 22,050 Hz.

The improvement introduced by using unboxed data and
by specializing the program is much higher than in the pre-
vious set of tests. The reason is the same for both cases:
more time is comparatively spent on arithmetic operations.
Therefore, compile-time specialization, which evaluates many
floating-point operations at compile time, simplifies frag-
ments of code whose execution would take a substantial
portion of the execution time (compare the left and right
columns in Table 2). Something similar happens with the
low-level optimization of floating-point arithmetic: opera-
tions are not removed, but they become much cheaper in-
stead (last and next-to-last rows in Table 2)

5.3 A Comparison with C
We wanted to determine how far we are from an imple-

mentation written directly in C. We wrote a C program
which mimics the Ciao one in the sense that it offers the
same flexibility: it uses dynamic memory, buffer size is not
statically determined, etc. It was written by an experienced
C programmer and it does not incur any unnecessary over-
heads. The results are highly encouraging: the C program
was only between 20% (for the tests in Table 2) to 40%
faster (for the tests in Table 1) on an i686 processor. In-
terestingly, this C program did not behave as smoothly as
expected when executed on the Gumstix: memory manage-
ment caused audible clicks, and writing an ad-hoc memory
manager would probably have been needed — or sacrific-
ing flexibility by using static data structures. Additionally,
the complexity of the C code would have made tuning the
application much more difficult.

6. CONCLUSIONS AND FURTHER WORK
In this paper we have shown how a set of advanced analy-

sis, transformation, and compilation tools can be applied to
a program written in a high-level CLP language which deals
with a combination of numerical and symbolic processing

(in the form of data structures) to generate an executable
which runs adequately in terms of time, memory, and feed-
back to the user on a pervasive computing platform. We
believe that the techniques we show here can be effectively
used in a broader set of scenarios.

The application we used is a sound spatializer, intended
to run on a wearable computer, the Bristol “CyberJacket”.
There were hard requirements regarding timing, sound qual-
ity, and non-functional behavior. The application code was
deliberately not “tricky”, but clear and as declarative as pos-
sible; it was not changed or adapted (by hand) in any of the
experiments. The initial executions (using a bytecode inter-
preter in the wearable computer) did not meet the stated
requirements, but a series of analysis, specialization, and
optimizing compilation stages, which we reported on, man-
aged to make it run well within spec on the target machine.
All of them were carried on using the Ciao/CiaoPP pro-
gramming environment. In an alternative, more demanding
scenario, needing more arithmetic operations, our code per-
forms within 20%-40% of a comparable C program.

It is difficult to single out a compilation stage which can
be attributed the majority of the benefits. In the first (non
arithmetic intensive) scenario, specialization caused most of
the speedup because of the reduction in the number of arith-
metic operations and calls performed. However, in the sec-
ond scenario, boxing / unboxing removal was the clear win-
ner. The rest of the optimizations were not highly relevant
in this case, but we believe they would have been if more
symbolic processing were needed. In any case, the informa-
tion gathered by the analysis was also used by the low-level
optimizing compiler.

We intend to continue the development and integration
of advanced compilation techniques. In particular, we want
to address inter-procedural and inter-modular boxing and
unboxing, as well as to explore the tradeoffs of doing addi-
tional boxing/unboxing steps, which has an extra overhead
but which in general may benefit other parts of the code,
and generating automatically “hints” for the garbage collec-
tor. We also want to study compilation schemes aimed at
saving memory space which, although not a problem in our
case study, can be a concern in other scenarios.
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