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Abstract. There have been quite a number of proposals for the integra-
tion of Object Oriented Programming features into Logic Programming,
resulting in much support theory and several languages. However, none
of these proposals seem to have made it into the mainstream. Perhaps
one of the reasons for this is that the resulting languages depart too
much from the standard logic programming languages to entice the av-
erage Prolog programmer. Another reason may be that most of what
can be done with object-oriented programming can already be done in
Prolog through the meta- and higher-order programming facilities that
the language includes, albeit sometimes in a more cumbersome way. In
light of this, in this paper we propose an alternative solution which is
driven by two main objectives. The first one is to explicitly include at
the language level only those characteristics of object-oriented program-
ming which are cumbersome to implement in standard Prolog systems.
The second one is to do this in such a way that there is a minimum
impact on the syntax and complexity of the language, i.e., to introduce
the minimum number of new constructs and concepts. Finally, we would
also like the implementation to be as straightforward as possible, ideally
based on simple source to source expansions.

1 Introduction

Over more than two decades now the logic programming community has seen
multiple proposals which try a combination of the object oriented and logic pro-
gramming paradigms (OOP and LP). Shapiro and Takeuchi [21] are the pioneers
in this matter with a model of objects as perpetual processes in a committed-
choice language without backtracking. Object state is stored in unshared vari-
ables, and object inter-communication is achieved using shared variables. An
implementation, based on KL1, of this idea can be found in [16].

Most proposals can be classified into several groups, based on the different
design and implementation approaches, as suggested by A. Davison in [11]. The
committed choice view is as mentioned above. In the backtracking process view, an
object is also treated as a perpetual process, but backtracking is allowed. Object
inter-communication is based on message-passing techniques other than variable
sharing. See [14,10,19]. In the clause view, objects are treated as dynamically
generated clauses which record the state. Object inter-communication is based
on execution of goals (methods). [22] and [15] are excellent references in this line.
The meta-interpretation view is based on the transformation of object-oriented



code into the underlying logic language. [20], [18], [17], [9], [13], and [22] are
examples of this technology. Another group may be added to this classification:
Technologies based on higher-order logic. See [6,12,4].

In general, in all approaches the main challenge is state manipulation. V. Alex-
iev states this in [3] and provides another classification based on different solu-
tions to this problem. Inheritance has also been widely discussed. Bugliesi [5]
presents a declarative point of view on inheritance. LIFE [1] and LOGIN [2] also
state similar interesting points of view. However, in most proposals a procedural
view of inheritance (e.g., message forwarding and delegation) is taken.

We pursue a different approach to the subject. Our aim is to integrate object
oriented behavior into a logic language as smoothly as possible. Consider the
following: There are a few very simple concepts behind the OOP paradigm,
and most of them can be emulated within Prolog. This allows us to offer an
alternative point of view: We can reinterpret some Prolog characteristics so as to
suit object-orientation. Thus, we take an existing LP platform as starting point.
Then, we identify those concepts present in the language which are very similar
to those involved in OOP. Finally, we adjust the language level to smoothly (both
in expressiveness and in implementation) obtain the object oriented behavior.

Traditionally, four main concepts are involved in OOP: (1) State encapsula-
tion (attributes within classes), (2) Instantiation (objects), (3) Inheritance, and
(4) Polymorphism. State can be found in LP in the form of dynamic predicates.
Whenever those dynamic predicates are constituted by simple facts they are a
good representation of changing state. Encapsulation is also found in LP from
modules (see, for example, the Ciao module system [7]), once state is represented
as predicates. Polymorphism is also possible in LP simply because Prolog is not a
typed language; or, to put it in other words, since Prolog is not typed, polymor-
phism is not an issue (unless we added types to LP). Object inter-communication
is not an issue: Static predicates can be promoted to methods in the same way
as procedures are in imperative languages such as C++ or Java.

There are only two key concepts of OOP which are not found at the roots
of LP: instantiation and inheritance. These two will concentrate most of our
attention in introducing O’Ciao, a library package implemented in the Ciao
language in order to enable OOP (with a similar spirit to, e.g., SICStus Objects).
First, we give a description of this library via examples (Section 2). Then we
discuss in Section 3 some implementation issues, and in Section 4 present some
experimental results, aimed at measuring the impact on performance of the OOP
extension with respect to plain LP. We conclude in Section 5.

2 The O’Ciao Object Oriented Model

O’Ciao has been designed as an extension to the module system of the underlying
LP language. In particular, we use the module system of the Ciao language. As
a result, there is very little special syntax (other than syntactic sugar) for using
the object-oriented features. This is another point of difference between O’Ciao
and previous proposals. In order to do this, we have taken advantage of Ciao



packages, which allow a uniform way of adding language features integrating
compile-time expansions and run-time support (see [7]).

Classes are declared in O’Ciao much in the same way as modules, but adding
Ciao package class, which will transform the original source code via a source-
to-source expansion which is called the class expansion. At the conceptual level,
there is a semantic “twist” of some declarations. Basically, dynamic predicates
in a class become attributes, and exported predicates become public methods.

In order to import classes and use its objects in a module/program, the Ciao
package objects has to be included. This will load a run-time support library,
declare some syntactic sugar, and enable the operator for instance creation and
a declaration which establishes class usage relationships (much the same as the
use_module/1 declaration establishes module usage relationships).

Class declaration. Classes are modules including the class package; attributes
are declared with dynamic/1, public methods with export/1.

Ezxample 1. The following Ciao code declares a class which implements an “im-
perative-style” stack of elements:

:— module(stack,[],[class]). % or: :- class(stack).

:— dynamic storage/1. :- export(push/1). :— export(pop/1).
push(Item) :- nonvar(Item), asserta(storage(Item)).

pop(Item) :- var(Item), retract(storage(Item)).

Notice the similarity with a traditional module. In fact, this kind of class
may be called an instantiable module, just because there is no usage of object
oriented specific declarations (e.g., inheritance relationships). The concept of
instantiable module is a step prior to the concept of class. There is only one
point of difference between a module and an instantiable module: “copies” of
the instantiable module can be generated.

Object creation and manipulation. The objects package enables the new/2 op-
erator and the use_class/1 declaration, which declares “imported” classes. The
creation of objects (of the imported classes) is performed by the new/2 operator.
This operator takes a free variable as first argument (which will be bound to
a unique instance identifier), and a class constructor as second argument. In-
stances can also be statically declared. Once the object has been created, any
exported (public) predicate may be called as a classically module-qualified goal.

Example 2. The following code uses the class defined in the previous example:

:- use_class(stack).
:— stackl instance_of stack.
main :- Stack2 new stack, stackl:push(a), Stack2:push(c).

In the example above, stackl is declared to be an instance of the stack
module. This instance is used as if it was a loaded module (a “copy” of the stack



module). Additionally, instances may be also created at run-time (this is the
case of Stack2) by using the new/2 operator. This accounts for instantiation,
and is the only main new operator added to the language. Its implementation is
discussed in Section 3.

Constructors are implicitly declared by writing clauses of a predicate whose
functor matches the class name (any arity is allowed). Destructors are also im-
plicitly declared by writing clauses for a destructor/0 predicate.

Ezample 3. Constructors and destructors are mainly used to allocate/release
system resources at the proper time. For example:

:— class(file_reader).

:- export(get_char/1).

:- dynamic handler/1.

file_reader(FileName) :- % constructor
open(FileName,read,Handler), assert(handler(Handler)).

destructor :- retract(handler(H)), close(H).

The default constructor (with arity zero, i.e., identical to the class name) is
used if defined, in the absence of a different explicit constructor when calling
new/2. Instance creation fails whenever the given constructor fails.

Constructors are useful to perform some initialization just after object cre-
ation takes place. State initialization is a particular case which is also provided
in the traditional way: Writing clauses for the state (dynamic) predicate, i.e.,
the attribute.

The objects package also provides some run-time type checking primitives:
interface/2, instance_of/2 (not to be confused with the declaration of the
same name), and derived_from/2. The first one is related to interface inher-
itance, the second one to code inheritance, and the third one simply retrieves
the class which derived the involved object. Similar primitives are also used at
compile time in order to perform a limited analysis on objects usage. This gives a
chance to detect semantic errors such as calling a non-public method at compile-
time. For the cases where this is not possible, run-time checks are introduced
(using the above primitives).

Inheritance. O’Ciao makes use of two different kinds of inheritance relationships:
code inheritance and interface inheritance. Multiple code inheritance is not sup-
ported, but emulated via interface inheritance (much the same as in Java).

Code inheritance is very similar to the re-exportation of modules through
the (ISO Prolog) reexport/1 declaration. The main differences are:

— A redefined predicate is implicitly overridden by the new definition (whereas
it is a name clash with modules). We believe implicit overriding is more
natural in OOP.

— The visibility of predicates can not be restricted: An inherited (but not
public) predicate may be exported, but an inherited public predicate can
not become private.



The last point ensures a uniform public interface along the inheritance line.
It is related to the existence of two different relationships in OOP: inheritance
and publication. Inheritance is related to a set of predicates which we call the
inheritable interface while (re)exportation is related to a set of predicates called
the exported or public interface (public and exported predicates are the same
concept in the scope of OOP).

Predicates are private by default, so they must be explicitly made public
by exporting them. Public predicates are then inheritable by default. An extra
declaration is added in order to explicitly declare private predicates which are
inheritable (the rest are “completely” private, or protected). The declaration is
inheritable/1. The (unique) class from which a given class inherits is then
declared with inherit_class/1.

Example 4. The following example illustrates the usage of the declarations for
inheritance. The item class declares set_value/1, get_value/1, and datum/1
to be inherited by descendant classes; in particular, they are inherited by the
tagged_item class.

:— class(item). :— class(tagged_item).

:— export(set_value/1). :- inherit_class(item).

:- export(get_value/1). :- export(set_tag/1).

:- inheritable(datum/1). :- export(get_tag/1).

:- dynamic datum/1. :- dynamic tag/1.

set_value(X) :- set_tag(X) :-
retractall(datum(_)), retractall(tag(.)),
assert (datum(X)). assert (tag(X)).

get_value(X) :- datum(X). get_tag(X) :- tag(X).

Interface inheritance forces the class inheriting the interface to implement
such interface. The compiler must ensure that a particular source will export the
same set of predicates as another one (and implement the same attributes). Inter-
face inheritance has been implemented by adding a declaration implements/1,
where its argument may be a proper class or an interface-expanded source.
Interface-expanded sources are similar to the interfaces provided in the Java
language: Only export/1 and dynamic/1 declarations are allowed.

Example 5. The code below to the left declares an interface and the class to the
right inherits it. Therefore, it is forced to implement public predicates a/1 and
b/1, in addition to those exported by item: set_value/1 and get_value/1

:— interface(is_a_must). :- class(itf_example).
:- export(a/1). :- implements(is_a_must).
:- export(b/1). :- implements(item).

Method overriding. Overridden predicates in OOP are imported predicates which
are locally redefined. A predicate is said to be overridden when it has been
inherited from any ascendant class, but the same predicate has been defined at



the current source class. In order to distinguish between both definitions there is
an inherited/1 predicate qualifier. By default, the local predicate is used. If the
inherited predicate definition is to be called, it must be qualified as inherited.

Virtual methods. Virtual methods allow descendant classes to provide different
implementations for a predicate. The ancestor will always call the version that
is defined at the bottom-most successor class in the inheritance line. O’Ciao
provides the virtual/1 declaration in order to declare virtual methods.

Example 6. In this example, any object derived from class integer_itemwill ac-
cept (only) an integer as argument to set/1, regardless of the validate_item/1
check implemented in the parent class generic_item.

:— class(generic_item). :- class(integer_item).

:— virtual validate_item/1. :— inherit_class(generic_item).
validate_item(I) :- nonvar(I). validate_item(I) :- integer(I).
:- export(set/1).

set(X) :- validate_item(X), set_value(X).

Object self reference. Sometimes, an object needs to know a reference to itself.
0O’Ciao provides this feature through the self/1 predicate.

3 Implementation issues

Providing instances requires, in essence, that the code be aware of the current
instance being executing. In O’Ciao, this is achieved by extending the nam-
ing convention for module qualification to include object names, and expanding
methods with an extra argument to pass around the object identifier.

In the module system, expressions of the form M: goal are qualified by module
name M (an atom). In the object system, M will instead be an object name, which
is a unary term whose functor matches the class which derives the object, and
whose argument is the instance identifier, a unique atom for that instance. The
new/2 operator returns the object name of the created object. Thus, during
execution, messages will have the form class(objid) : method.

When methods are called, the code involved will pass around the object
name, so that the assert/retract predicates on the attributes operate over the
proper state encapsulation. This is achieved by an extra argument, also known as
the hidden argument in other object oriented languages. This argument is added
by the class expansion to every clause of a static predicate of a class (dynamic
predicates, i.e., attributes, are treated in a different way). The extra argument
is added as the last argument in order to preserve the original Prolog indexing.

Therefore, messages of the form class(objid) : method must be converted to
goals of the form class : method(objid). The Ciao module expansion facilities
are used for this. In Ciao, meta-goals and meta-arguments of the form M: Term
are expanded at run-time when M cannot be resolved at compile-time, which is
the case with objects. The compiler sets things up so that a meta-goal M: Term



in a module Source will be expanded by exp_goal(Term,Source,M,Goal) to
Goal, and meta-arguments by a similar predicate exp_fact/4. These predicates
are generated by the class expansion, and are discussed in the rest of this section.
The general system performance is fully dependent on the code automatically
generated by the class expansion. In general, the more information is known by
the class expansion, the better performance is achieved. The Ciao compiler allows
code expansion in two stages (for further reference, consult [8]). In a first stage,
declarations of a class are processed in order to generate the interface information
that may be needed. In a second stage, module dependences have been resolved
by the compiler. Code can then be generated taking into account other module
or class declarations related to the current code being expanded. This interesting
feature allows O’Ciao class expansion to avoid many run-time checks, to generate
much static code, and to perform exhaustive semantic analysis on class code.

Promoting static predicates to methods. Besides adding the hidden argument to
methods, the class expansion automatically generates clauses for exp_goal/4 to
account for the run-time expansions of method calls. The code automatically
generated also performs visibility checks, so that only classes imported can be
used. Prolog indexing is preserved all along the expansion process.

Example 7. Consider a module m which imports class tagged_item of Exam-
ple 4. The following code will be automatically generated:

accessible_set_value_1(item,item).

accessible_set_value_1(item,tagged_item).

accessible_set_value_1(item,m).

accessible_set_tag_1(tagged_item,tagged_item).

accessible_set_tag_1(tagged_item,m) .

exp_goal (set_value(X) ,M,item(0bj),’item:set_value’(X,0bj)) :-
accessible_set_value_1(item,M).

exp_goal (set_tag(X),M,tagged_item(0bj),’tagged_item:set_tag’(X,0bj)) :-
accessible_set_tag_l(tagged_item,M).

Virtual methods require a different run-time expansion, because it is not
possible to figure out which version of the predicate will be the most specialized
one. This depends on the actual object calling the method. Therefore, it can
only be determined at run-time. This is done by a run-time support module
virtual_rt which includes the required inheritance information to determine
the most specialized version of a virtual method.

Ezxample 8. Method set/1 of Example 6 calls validate_item/1, which is a
virtual method. This call will be expanded at compile-time as follows:

set(X,0bj) :- virtual_rt(0bj):validate_item(X), ...

Note that the object name itself does not contribute in any way to expand
messages of the form Obj:goal into proper goals: It is just passed along as



an argument. Thus, it is possible to call methods using compile-time generated
clauses which avoid most of the run-time expansion overhead. This optimization
can be applied to any method. Any goal of the form 0bj:goal will be expanded
at compile-time into method_call(0bj,goal), where method_call/2is defined
by (automatically generated) clauses of the form:

method_call(item(0ObjId) ,Method) :- item_call(Method,0ObjId).
item_call(set_value(X),0bjId) :- set_value(X,0bjId).

Promoting dynamic predicates to attributes. For attributes a different expan-
sion scheme has been implemented, since adding an extra argument for the
object name will most probably compromise efficiency when the number of in-
stances of a class is high. Instead, different predicate names for the attributes of
each instance are dynamically created. This is performed by run-time expansion
exp_fact/4 and operator new/2.

However, the expansion is different for external (i.e., from outside the class)
and internal manipulation of the attribute. Whenever an external call, assert, or
retract is issued on an exported attribute, the code is run-time expanded, as it
is done with method calls, but in this case using exp_fact/4.

Example 9. For an exported attribute datum/1 of a class export_item the fol-
lowing clause will be generated at compile-time:

exp_fact (datum(X) ,M,export_item(0Obj),Goal) :-
accessible_datum_1(export_item,M),
functor_concat (0bj,’ :export_item: :datum’ (X) ,Goal) .

where the auxiliary predicate functor_concat/3 has computed answers of the
form functor_concat(class(123),pattern(X),’123pattern’ (X)).

Whenever a method operates over an attribute (i.e., internal attribute ma-
nipulation), a different expansion is performed. A run-time support module
class_rt is used to map the attribute to the corresponding dynamic predicate.
An optimization is now possible by using special versions of the assert/retract
predicates. Most times, assert /retract predicate calls may be automatically trans-
lated to their specialized versions at compile time, saving some overhead.

Ezxample 10. Method set_value/1 of class item in Example 4 will be expanded
at compile-time to:

set_value(X,0bj) :- ..., assert_attr(0Obj,’:item::datum’(X)).

When a new object is created, the dynamic predicates which hold its state
must also be (dynamically) created. This includes all attributes along the com-
plete inheritance line of the class which derives the object. The names of at-
tributes are saved at compile-time in attribute templates, so that new/2 uses the
templates to create the corresponding dynamic predicates for the instance.

Example 11. Attribute datum/1 of class generic_item of Example 6 will be
assigned a template of the form:

attribute(generic_item,’:generic_item::datum’,1).



4 Performance tests

During the development of O’Ciao, we have tested several implementation al-
ternatives before reaching the one described in this paper. Those prototypes
have shown very helpful in determining which might be the main weaknesses in
terms of performance and how to solve them. Not surprisingly, the main points
to take into account are instance creation/destruction, attribute manipulation
(i.e., usage of assert/retract on attributes), and method calling. In this section we
present the results of the performance benchmarking conducted on these issues
for comparing the OOP extension with plain LP.

Instance creation and destruction. Instance creation/destruction may be con-
sidered as “wasted time” since no user code is executed (except for constructors
and destructors). There are two main factors which influence the performance
of instantiation: the number of attributes needed by the object and the number
of previously created (and not destroyed) objects.

Since creating an object basically amounts to creating its attributes, the num-
ber of attributes is an obvious factor. Figure 1 shows the relationship between
the number of attributes and the execution time for creating and immediately
destroying a single object. The results indicate a less-than-linear,! quite accept-
able, overhead.
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Fig. 1. Creating and destroying one object
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Fig. 2. Creating (versus destroying) objects

! Don’t let the scale confuse you: It is less than linear because, e.g., for 500 attributes
it takes less than ten times the time for 50 attributes.



Every time an object is created, new atoms for the instance identifier and the
attribute names are created. Thus, the atom table itself grows up. Unfortunately,
every time an atom is created the atom table must be looked-up first. As a
result, object creation might perform worse with the number of instances created
during execution. In the test shown in Figure 2, left, objects were not destroyed
after creation. The overhead growth tends to be exponential with the number
of instances. In some cases, the Prolog engine may run out of memory and
temporarily stop execution in order to reserve additional space (this effect can
be seen at the 18 Kobjects point). Fortunately, instance destruction alleviates
this behavior completely, as it can be observed in Figure 2, right, where objects
were destroyed immediately after creation. Notice that execution time is now
kept at a minimum even when creating up to 22000 objects.

Attribute manipulation. To perform this benchmarking, we have compared the
execution times of assert/retract when called from a module against when called
from a class. Exactly the same code (except for the obvious syntactic differences)
was used both in the module and the class. The results showed that the class
code is 50% slower than the module code. This was due to the poor efficiency of
the Prolog-coded predicate functor_concat/3 used in the creation of names of
attributes. A C-coded implementation of this predicate is expected to improve
the performance of attribute manipulation.

Method calling. This test was mainly designed in order to measure the execution
overhead involved in run-time code expansion when a method is called. Since
an absolute measure will not be useful in order to reach a conclusion, we have
compared execution times of calling methods against the execution of traditional
module-qualified goals. Three kinds of goals have been considered:

— Dynamic? goals of the form Var:goal. These goals may be found both with
the module system (when Var is bound to a module name) and with the
object oriented extension (when Var is bound to an object identifier).

— Optimized dynamic goals: found in the object oriented extension, when
Var:goal is translated to method_call(Var,goal) (as described in page 8).

— Static goals of the form module:goal, where module is known at compile-
time. These are typically found with the module system, but also with the
object oriented extension when objects are statically declared.

Table 1 summarizes the results on execution times of the abovementioned
kinds of goals. Each of the two main columns shows execution times for one
encapsulation system. The column labeled as Ratio is the quotient of the other
two, indicating how much faster or slower (1/x) objects are than modules. The
first two rows show that O’Ciao exhibits better performance on run-time ex-
panded goals. This is just because object-oriented goals need simpler checks on
the import/export interface. This result is very important, since dynamic goals
are the usual method calling in OOP. The last two rows compare performance
on static goals. This shows that static instances are rather expensive.

2 “Dynamic” denotes here that the call can not be fully resolved at compile time.



l Module system I O’Ciao |

Kind of goal|Time (ms) Kind of goal |Time (ms)||Ratio
X:goal 0.0939 X:goal 0.01205( 7.8
X:goal 0.0939 || method call(X,goal)| 0.002155|| 43.6

mod:goal | 0.0003627 || method_call(X,goal)| 0.002155|{1/5.9
mod:goal | 0.0003627 obj:goal 0.000457||1/1.3

Table 1. Goal execution times

Overall, the tests show that instance creation and method calling have an
insignificant overhead on program execution. Considering that dynamic goals
is the usual way of method calling, classes perform even better than modules.
Attribute manipulation adds an important overhead, but we expect to alleviate
it by careful implementation of the overhead sources.

5 Conclusions

We have focused the design and the implementation of O’Ciao on the final user
requirements instead of the theoretical aspects. In this line, we expect O’Ciao to
be an easy-to-learn programming tool both for programmers familiarized with
Prolog and/or object-orientation. In O’Ciao we have avoided as much as possible
the development of a new language, simply by introducing a minimal set of new
features and keeping the original language syntax as much as possible. The
implementation has been done exclusively using the available Prolog compiler,
avoiding the development of a new one. Performance of the resulting object-
oriented programs has also been considered. The results show that performance
is quite acceptable, compared to plain Prolog.

We expect to further enhance current performance results simply by adding
a few C-coded support primitives to our engine. Implicit object destruction is
another target for future work related to implementation. Currently, O’Ciao in-
stance destruction is explicitly invoked by calling a destroy/1 operator. This
operator can be seen as a handle for retracting the state of the object. Note that
in Prolog dialects, retraction is the only way to clean up the predicate database.
However, we are currently working on enhancing the Prolog engine garbage col-
lector to do the work. The idea is to enable a hook predicate that would be called
by the garbage collector on attributed variables. Dynamic predicates would have
an attributed variable associated so that when it is “garbage collected” the re-
traction is done. This is possible if dynamic predicates are encapsulated, which
is the case in the module system of Ciao and in objects in O’Ciao. Having this,
it would then suffice to associate an attributed variable to each instance, and a
reference count to this variable: this will enable implicit instance destruction.

Finally, we have not commented on the possible applications of O’Ciao, since
it inherits much of the OOP application field. However, we have found it a very
good tool in order to develop the Ciao/Java and Ciao/TclTk programming in-
terfaces. Distributed and agent programming is another field of experimentation
were O’Ciao is currently being applied.
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