Numeric Fields in Termination Analysis of Java-like Languages

Elvira Albert\(^{(1)}\), Puri Arenas\(^{(1)}\), Samir Genaim\(^{(2)}\), Germán Puebla\(^{(2)}\)

\(^{(1)}\) DSIC, Complutense University of Madrid
\(^{(2)}\) CLIP, Technical University of Madrid

10th Workshop on Formal Techniques for Java-like Programs FTfJP 2008

8 July, 2008
Termination analysis: find termination proofs for as wide a class of (terminating) programs as possible.

How?: study of loops which are the program constructs which may introduce non-termination.
Termination analysis: find termination proofs for as wide a class of (terminating) programs as possible.

How?: study of loops which are the program constructs which may introduce non-termination.

⇒ Track size information:

```java
while (l!=null) l=l.next;
```

how the (size of the) data involved in loop guards changes when the loop goes through its iterations.

⇒ Specify ranking function: function which strictly decreases at each iteration of the loop

size(l) is a ranking function

The problem: termination behavior affected by numeric fields.

while (i < n) {
 i++; o.m();
} n-i is a ranking function

while (i < f.n) {
 i++; o.m();
} f.n-i ranking function?
Termination analysis: find termination proofs for as wide a class of (terminating) programs as possible.

How?: study of loops which are the program constructs which may introduce non-termination.

⇒ Track \textit{size} information:

\begin{verbatim}
while (l!=null) l=l.next;
\end{verbatim}

how the (size of the) data involved in loop guards changes when the loop goes through its iterations

⇒ Specify ranking function: function which strictly decreases at each iteration of the loop

\begin{verbatim}
size(l)
\end{verbatim} is a ranking function
The Problem

- **Termination analysis**: find termination proofs for as wide a class of (terminating) programs as possible.
- **How?**: study of loops which are the program constructs which may introduce non-termination.

 ⇒ **Track size information**:

  ```java
  while (l!=null) l=l.next;
  ```

 how the (size of the) data involved in loop guards changes when the loop goes through its iterations

 ⇒ **Specify ranking function**: function which strictly decreases at each iteration of the loop

  ```java
  size(l)
  ```

 is a ranking function

- **The problem**: termination behavior affected by *numeric fields*.

  ```java
  while (i<n) {i++;o.m();}
  ```

  ```java
  n-i
  ```

 is a ranking function
The Problem

- **Termination analysis**: find termination proofs for as wide a class of (terminating) programs as possible.
- **How?**: study of loops which are the program constructs which may introduce non-termination.

⇒ Track **size** information:

```java
while (l!=null) l=l.next ;
```

how the (size of the) data involved in loop guards changes when the loop goes through its iterations

⇒ Specify **ranking function**: function which strictly decreases at each iteration of the loop

- `size(l)` is a ranking function

- **The problem**: termination behavior affected by **numeric fields**.

  ```java
  while (i<n) {i++;o.m();}    \[n-i\] is a ranking function
  while (i<f.n) {i++;o.m();}    \[f.n-i\] ranking function?
  ```

Elvira Albert

Numeric Fields in Termination Analysis of Java-like Languages
Difficulties in termination analysis of OO languages:
exceptions, virtual invocation, references, heap-allocated data-structures, objects, fields.
Difficulties in termination analysis of OO languages:
exceptions, virtual invocation, references, heap-allocated
data-structures, objects, fields.

Why the heap poses problems to static analysis?
- global data structure accessed using (chained) references,
- same location modified using different aliased references
- references may point to different locations during execution
Difficulties in termination analysis of OO languages:
exceptions, virtual invocation, references, heap-allocated data-structures, objects, fields.

Why the heap poses problems to static analysis?
- global data structure accessed using (chained) references,
- same location modified using different aliased references
- references may point to different locations during execution

What is the consequence?
- track how (size of) data involved in loop guards changes
- when guards involve information stored in the heap tracking size information rather complex,
- aliasing information required to track updates of fields
Termination analyzers handle a good number of the features:

- **Costa**: (cost and) termination analyzer for Java bytecode
- **Julia**: incorporates the path-length domain for reference fields

"Path-length":
Prove termination of loops which traverse acyclic heap-allocated data structures (i.e., linked lists, trees, etc.).

Abstract domain for reference values

Does not capture any information about numeric fields

Our Goal:

- estimate how often loop termination depends on numeric fields in the Sun implementation of the Java libraries for J2SE 1.4.2
- propose sufficient conditions for termination to cover a large fraction of those loops not provable using current techniques
Termination analyzers handle a good number of the features:

- **Costa**: (cost and) termination analyzer for Java bytecode
- **Julia**: incorporates the path-length domain for reference fields

Path-length:
- Prove termination of loops which traverse acyclic heap-allocated data structures (i.e., linked lists, trees, etc.).
- Abstract domain for reference values
- Does not capture any information about numeric fields
Termination analyzers handle a good number of the features:

- **Costa**: (cost and) termination analyzer for Java bytecode
- **Julia**: incorporates the path-length domain for reference fields

Path-length:
- Prove termination of loops which traverse acyclic heap-allocated data structures (i.e., linked lists, trees, etc.).
- Abstract domain for reference values
- Does not capture any information about numeric fields

Our Goal:
- Estimate how often loop termination depends on numeric fields in the Sun implementation of the Java libraries for J2SE 1.4.2
- Propose sufficient conditions for termination to cover a large fraction of those loops not provable using current techniques
Techniques for proving termination provide \textit{sufficient} (but not necessary) conditions for termination

Practicality of termination analyses is measured by applying the analyses to a \textit{representative set} of real programs
Techniques for proving termination provide sufficient (but not necessary) conditions for termination.

Practicality of termination analyses is measured by applying the analyses to a representative set of real programs.

Our design of the analysis driven by common programming patterns for loops that we have found in the Java libraries.

By looking at Sun’s implementation of the J2SE (version 1.4.2_13) libraries, which contain 71432 methods:

- We have found 7886 loops (for, while, and do) from which 1021 (12.95%) explicitly involve fields in their guards.
- By inspecting these 1021 loops, we have observed three kinds of common patterns in the Java libraries.
Pattern #1: numeric fields as bounds for loop counters

```java
for(; i<set.unitsInUse; i++) bits[i]=set.bits[i];
```

library java.util.BitSet, where unitsInUse is an int field
Pattern #1: numeric fields as bounds for loop counters

```java
for(; i<set.unitsInUse; i++) bits[i]=set.bits[i];
```
l library java.util.BitSet, where `unitsInUse` is an int field

Pattern #2: the bound of the loop counter corresponds to the length of an array which is stored in a field

```java
for(int i=0; i<m_args.length; i++)
    m_args[i].fixupVariables(vars, globalsSize);
```
l library org.apache.xpath.functions.FunctionMultiArgs
where `m_args` is a field of type `Expression[]`
- **Pattern #1**: numeric fields as bounds for loop counters
  ```java
  for(; i<set.unitsInUse; i++) bits[i]=set.bits[i];
  ```
 library `java.util.BitSet`, where `unitsInUse` is an int field.

- **Pattern #2**: the bound of the loop counter corresponds to the length of an array which is stored in a field
  ```java
  for(int i=0; i<m_args.length; i++)
      m_args[i].fixupVariables(vars, globalsSize);
  ```
 library `org.apache.xpath.functions.FunctionMultiArgs` where `m_args` is a field of type `Expression[]`.

- **Pattern #3**: numeric fields as loop counters: the field value is updated but none of the references in the path are re-assigned
  ```java
  for(; count<newLength; count++) value[count] = '\0';
  ```
 library `java.lang.StringBuffer`, with `count` an int field.
The Context-Dependent Approach:
- computes abstractions of all possible objects in the program
- too expensive in practice to deal with real programs
- obtains context-dependent termination information
- more precise but the results not extrapolable to other contexts
The Context-Dependent Approach:
- computes abstractions of all possible objects in the program
- too expensive in practice to deal with real programs
- obtains context-dependent termination information
- more precise but the results not extrapolable to other contexts

Libraries: ideally we would like to prove termination context-independent, i.e., regardless of what the contents of the heap are when the method is executed.
The Context-Dependent Approach:
- computes abstractions of all possible objects in the program
- too expensive in practice to deal with real programs
- obtains context-dependent termination information
- more precise but the results not extrapolable to other contexts

Libraries: ideally we would like to prove termination context-independent, i.e., regardless of what the contents of the heap are when the method is executed

The Context-Independent Approach:
- only a small fraction of objects usually affects the execution
- a lightweight approach to approximate the contents of only such subset of objects in the heap
- correct by making safe assumptions about the objects (and fields) whose contents are not taken into consideration
Goal: finding field accesses which are local to a loop L.

A field access $l.r_1 \ldots r_n.f$ is local to a loop if

(i) No prefix of $l.r_1 \ldots r_n.f$ changes its value within L.
(ii) If the value of $l.r_1 \ldots r_n.f$ changes within L, then all write accesses are explicitly through $l.r_1 \ldots r_n.f$.

(i) guarantees that all occurrences of the field access refer to the same memory location in the heap.
(ii) guarantees that all write accesses to the field can be syntactically identified.

Practical implication: if we ensure that a field is local, then we can treat it as if it was a local variable.
Goal: finding field accesses which are local to a loop L.

A field access $l.r_1 \ldots r_n.f$ is local to a loop if

(i) No prefix of $l.r_1 \ldots r_n$ changes its value within L
Goal: finding field accesses which are local to a loop L.

A field access $l.r_1\ldots r_n.f$ is local to a loop if

(i) No prefix of $l.r_1\ldots r_n$ changes its value within L

(ii) If the value of $l.r_1\ldots r_n.f$ changes within L, then all write accesses are explicitly through $l.r_1\ldots r_n.f$.

(i) guarantees that all occurrences of the field access refer to the same memory location in the heap

(ii) guarantees that all write accesses to the field can be syntactically identified
Goal: finding field accesses which are local to a *loop* L.

A field access $l.r_1 \ldots r_n.f$ is *local* to a loop if

1. No prefix of $l.r_1 \ldots r_n$ changes its value within L
2. If the value of $l.r_1 \ldots r_n.f$ changes within L, then all write accesses are explicitly through $l.r_1 \ldots r_n.f$.

(i) guarantees that all occurrences of the field access refer to the same memory location in the heap

(ii) guarantees that all write accesses to the field can be syntactically identified

Practical implication: if we ensure that a field is *local*, then we can treat it as if it was a *local variable*.
Given a loop L, we denote by g-fields(L) the set of (numeric) field accesses $l.r_1 \ldots r_n.f$ which appear in the guard of L.

The method is applied locally to all nested loops in L. Termination ensured if all loops involved are terminating. Involved means not only those loops explicit in the body but also those coming from possible method calls.
Given a loop L, we denote by g-fields(L) the set of (numeric) field accesses $l.r_1 \ldots r_n.f$ which appear in the guard of L.

The termination analysis is as follows:

1. Compute the set g-fields(L).
2. Compute the set l-g-fields(L): the subset of g-fields(L) whose locality condition has been proved.
3. Analyze the termination of L by considering those field accesses in l-g-fields(L) as if they were local variables.
Given a loop L, we denote by $g\text{-}fields(L)$ the set of (numeric) field accesses $l.r_1 \ldots r_n.f$ which appear in the guard of L.

The termination analysis is as follows:

1. Compute the set $g\text{-}fields(L)$.
2. Compute the set $l\text{-}g\text{-}fields(L)$: the subset of $g\text{-}fields(L)$ whose locality condition has been proved.
3. Analyze the termination of L by considering those field accesses in $l\text{-}g\text{-}fields(L)$ as if they were local variables.

The method is applied locally to all nested loops in L.

Termination ensured if all loops involved are terminating.

Involved means not only those loops explicit in the body but also those coming from possible method calls.
Syntactic Inference of the Locality Condition

- Approach practical only if we provide effective mechanisms to prove the locality condition on field accesses
- Sufficient **syntactic conditions** to ensure that a numeric field access \(l.r_1 \ldots r_n.f \) is local to \(L \):

1. The reference variable \(l \) remains constant in \(L \) ⇒ check there is no assignment to \(l \) within \(L \).
2. All reference fields \(l.r_1, \ldots, l.r_1 \ldots r_n \) are constant in \(L \) ⇒ check there is no assignment to a field with signature \(r_i \).
3. All assignments to a field with the same signature as \(f \) in \(L \) are done through the field access \(l.r_1 \ldots r_n.f \).

Condition 1 guarantees that we do not consider this loop terminating:

```java
while (l.size < 10) {
    l.size++; l = new C();
}
```

Condition 2 guarantees that we do not consider this loop terminating:

```java
while (l.r1.size < 10) {
    l.r1.size++; l'.r1 = z;
}
```

Condition 3 is not satisfied in a loop of the form:

```java
while (l.size < 10) {
    l.size++; l'.size--;
}
```
Approach practical only if we provide effective mechanisms to prove the locality condition on field accesses

Sufficient **syntactic conditions** to ensure that a numeric field access \(l.r_1\ldots r_n.f \) is local to \(L \):

1. **The reference variable** \(l \) *remains constant* in \(L \)
 \[\Rightarrow \text{check there is no assignment to } l \text{ within } L. \]

2. **All reference fields** \(l.r_1, \ldots, l.r_1\ldots r_n \) are constant in \(L \)
 \[\Rightarrow \text{check there is no assignment to a field with signature } r_i \]

3. **All assignments to a field with the same signature as** \(f \) in \(L \) *are done through the field access* \(l.r_1\ldots r_n.f \)
Syntactic Inference of the Locality Condition

- Approach practical only if we provide effective mechanisms to prove the locality condition on field accesses
- Sufficient **syntactic conditions** to ensure that a numeric field access $l.r_1\ldots r_n.f$ is local to L:
 1. The reference variable l remains constant in L
 \Rightarrow check there is no assignment to l within L.
 2. All reference fields $l.r_1, \ldots, l.r_1\ldots r_n$ are constant in L
 \Rightarrow check there is no assignment to a field with signature r_i.
 3. All assignments to a field with the same signature as f in L are done through the field access $l.r_1\ldots r_n.f$

- Condition 1 guarantees that we do not consider this loop terminating:
 while (l.size < 10) { l.size++; l=new $C();$ }
Syntactic Inference of the Locality Condition

- Approach practical only if we provide effective mechanisms to prove the locality condition on field accesses
- Sufficient **syntactic conditions** to ensure that a numeric field access \(l.r_1 \ldots r_n.f \) is local to \(L \):
 1. The reference variable \(l \) remains constant in \(L \)
 \(\Rightarrow \) check there is no assignment to \(l \) within \(L \).
 2. All reference fields \(l.r_1, \ldots, l.r_1 \ldots r_n \) are constant in \(L \)
 \(\Rightarrow \) check there is no assignment to a field with signature \(r_i \).
 3. All assignments to a field with the same signature as \(f \) in \(L \) are done through the field access \(l.r_1 \ldots r_n.f \)

- Condition 1 guarantees that we do not consider this loop terminating: \(\text{while (l.size} < 10) \{ l.size++; l=\text{new C();} \} \)
- Condition 2 guarantees that we do not consider this loop terminating: \(\text{while (l.r}_1.\text{size} < 10) \{ l.r_1.\text{size}++; l'.r_1=z; \} \)
Syntactic Inference of the Locality Condition

- Approach practical only if we provide effective mechanisms to prove the locality condition on field accesses
- Sufficient **syntactic conditions** to ensure that a numeric field access $l.r_1 \ldots r_n.f$ is local to L:
 1. The reference variable l remains constant in L
 ⇒ check there is no assignment to l within L.
 2. All reference fields $l.r_1, \ldots, l.r_1 \ldots r_n$ are constant in L
 ⇒ check there is no assignment to a field with signature r_i
 3. All assignments to a field with the same signature as f in L are done through the field access $l.r_1 \ldots r_n.f$

- Condition 1 guarantees that we do not consider this loop terminating: \texttt{while (l.size < 10) \{ l.size++; l=new C(); \} }
- Condition 2 guarantees that we do not consider this loop terminating: \texttt{while (l.r_1.size < 10) \{ l.r_1.size++; l’.r_1=z; \} }
- Condition 3 is not satisfied in a loop of the form \texttt{while (l.size < 10) \{ l.size++; l’.size--; \} }
Consider the previous loop:

```java
for(; this.count < newLength; this.count++)
    value[this.count] = '\0';
```

We can prove that `this.count` is local to the loop by checking the syntactic conditions stated above:
Consider the previous loop:

```java
for(; this.count < newLength; this.count++)
    value[this.count] = '\0';
```

We can prove that `this.count` is local to the loop by checking the syntactic conditions stated above:

- the reference `this` does not change;
- all updates to `this.count` are done through `this.count`
Consider the previous loop:

```
for(; this.count < newLength; this.count++)
    value[this.count] = '\0';
```

We can prove that `this.count` is local to the loop by checking the syntactic conditions stated above:

- the reference `this` does not change;
- all updates to `this.count` are done through `this.count`

The key point is that we can safely treat `this.count` as a local variable and hence:

- Existing termination analyzers are able to infer that `this.count` is increasing and `newLength` constant at each iteration
- Thus, `newLength-this.count` is a decreasing well-founded measure and thus termination is guaranteed.
Conditions that methods in a loop, $M(L)$, must satisfy in order to preserve the locality condition on g-fields(L)

We distinguish three possible scenarios:
Conditions that methods in a loop, $M(L)$, must satisfy in order to preserve the locality condition on g-fields(L)

We distinguish three possible scenarios:

1. The implementation of m is available at analysis time and m does not modify the value of the (numeric) field

2. The implementation of m is available at analysis time and m modifies the value of the (numeric) field

3. The implementation of m either it is not available or it has been redefined by means of subclassing.
Consider the following classes which define a method \(m_1 \):

```java
class A {
    int m1() { return 1; }
    ...
}

class B extends A {
    int m1() { return 2; }
    ...
}
```

We want to prove termination of the following method:

```java
void test1(A a, int k) {
    while (a.f < k) a.f = a.m1();
}
```

The reference variable \(a \) remains constant and the field \(a.f \) is not updated within either implementation of \(m_1 \).

Proving termination now is straightforward.
Consider the following classes which define a method m_1:

```java
class A {
    int m_1() { return 1; }
    ...
};

class B extends A {
    int m_1() { return 2; }
    ...
};
```

We want to prove termination of the following method:

```java
void test_1(A a, int k) {
    while (a.f < k) a.f = a.f + a.m_1();
}
```
Consider the following classes which define a method m_1:

```java
class A {
    int m1() { return 1; }
    ...
}

class B extends A {
    int m1() { return 2; }
    ...
}
```

We want to prove termination of the following method:

```java
void test1(A a, int k) {
    while (a.f < k) a.f = a.f + a.m1();
}
```

- The reference variable a remains constant and the field $a.f$ is not updated within either implementation of m_1.
- We can guarantee that the field access $a.f$ is local to $test_1$.
- Proving termination now is straightforward.
Consider the following implementation of method \(m_2 \):

```java
class B extends A {
    void m2() {
        f = f + 1;
    }
}
```

\(m_2 \) is responsible for the termination of test \(2 \):

```java
void test2(B b, int k) {
    while (b.f < k) b.m2();
}
```

Track variations in \(b.f \) in an inter-procedural manner.

Inlining cannot always be done (problematic for recursion).

Transform the methods to carry as additional parameters the fields that must be tracked.

At the level of Java requires a sophisticated transformation, since parameters are passed by value.

We can have intermediate representations (bytecode) with permit multiple output parameters.
Consider the following implementation of method \texttt{m}_2:

```java
class B extends A {
    void \texttt{m}_2() {
        f = f + 1;
    }
}
```

\texttt{m}_2 is responsible for the termination of \texttt{test}_2:

```java
void \texttt{test}_2(B b, int k) {
    while (b.f < k) b.m_2();
}
```
Consider the following implementation of method m_2

```java
class B extends A {
    void $m_2()$ {
        f = f + 1;
    }
}
```

m_2 is responsible for the termination of $test_2$:

```java
void $test_2(B b, int k)$ {
    while (b.f < k) b.$m_2();
}
```

- Track variations in $b.f$ in an inter-procedural manner.
- Inlining cannot always be done (problematic for recursion).
Scenario 2

Consider the following implementation of method m_2

```java
class B extends A {
    void $m_2()$
    {
        f = f + 1;
    }
}
```

m_2 is responsible for the termination of $test_2$:

```java
void $test_2(B b, int k)$
{
    while (b.$f < k$) b.$m_2$();
}
```

- Track variations in $b.f$ in an inter-procedural manner.
- Inlining cannot always be done (problematic for recursion).
- Transform the methods to carry as additional parameters the fields that must be tracked.
 - At the level of Java requires a sophisticated transformation, since parameters are passed by value.
 - We can have intermediate representations (bytecode) with permit multiple output parameters.
Scenario 3

If the code of a method m is **not available** or the implementation of the method has been **redefined**:

1. the method terminates,
2. it does not update any field access in g-fields,
3. it does not have callbacks.

Once the new implementation is available, we check the first two syntactic conditions on m. Then, we apply our method to m to prove that it does not introduce a termination problem.
Scenario 3

If the code of a method m is not available or the implementation of the method has been redefined:

- e.g., if m is abstract, the user will usually implement m which might modify the fields that affect termination
- also, the new implementation might introduce callbacks which endanger termination
Scenario 3

- If the code of a method m is not available or the implementation of the method has been redefined:
 - e.g., if m is abstract, the user will usually implement m which might modify the fields that affect termination
 - also, the new implementation might introduce callbacks which endanger termination
- One possibility is, once the implementation is available, to re-analyze the loop with the new method
Scenario 3

- If the code of a method m is not available or the implementation of the method has been redefined:
 - e.g., if m is abstract, the user will usually implement m which might modify the fields that affect termination
 - also, the new implementation might introduce callbacks which endanger termination

- One possibility is, once the implementation is available, to re-analyze the loop with the new method

- More interestingly, we can try to prove modular termination of the loop by assuming:
 1. the method terminates,
 2. it does not update any field access in g-fields,
 3. it does not have callbacks.
Scenario 3

- If the code of a method m is not available or the implementation of the method has been redefined:
 - e.g., if m is abstract, the user will usually implement m which might modify the fields that affect termination
 - also, the new implementation might introduce callbacks which endanger termination
- One possibility is, once the implementation is available, to re-analyze the loop with the new method
- More interestingly, we can try to prove modular termination of the loop by assuming:
 1. the method terminates,
 2. it does not update any field access in g-fields,
 3. it does not have callbacks.
- Once the new implementation is available, we check the first two syntactic conditions on m
- Then, we apply our method to m to prove that it does not introduce a termination problem
It is common to find loops for scenario 3 in the Java libraries:
```java
for(int i=0; i<args.length; i++)
    args[i].fixupVariables(vars, globalsSize);
```

The method `fixupVariables` is an abstract method. Make assumption that `fixupVariables` does not introduce a termination problem and prove termination.

For actual implementation of `fixupVariables`, we have to check that the local access condition holds and that it terminates.

We found many loops for scenario 1:
```java
for (int i = 0; i < size; i++)
    if (elem.equals(elementData[i])) return i;
```
in method `public int indexOf(Object elem)` of the library `java.util.ArrayList` and `size` is a field of type `int`.

The implementation of `equals` is available and contains as unique instruction `return (this==obj)`.

It ensures the local field access of `size` and thus the loop is definitely terminating.

It is rare in the libraries to find loops for scenario 2.
It is common to find loops for scenario 3 in the Java libraries:

```java
for (int i = 0; i < m_args.length; i++)
    m_args[i].fixupVariables(vars, globalsSize);
```

the method `fixupVariables` is an abstract method.

- Make assumption that `fixupVariables` does not introduce a termination problem and prove termination.
- For actual implementation of `fixupVariables`, we have to check that the local access condition holds and that it terminates.
Method Invocations in the Java Libraries

- It is common to find loops for scenario 3 in the Java libraries

  ```java
  for(int i=0; i<m_args.length; i++)
    m_args[i].fixupVariables(vars, globalsSize);
  ```

 the method `fixupVariables` is an abstract method.

- Make assumption that `fixupVariables` does not introduce a termination problem and prove termination

- For actual implementation of `fixupVariables`, we have to check that the local access condition holds and that it terminates.

- **We found many loops for scenario 1.**

  ```java
  for (int i = 0; i < size; i++)
    if (elem.equals(elementData[i])) return i;
  ```

 in method `public int indexOf(Object elem)` of the library `java.util.ArrayList` and `size` is a field of type `int`.

Elvira Albert

NUMERIC FIELDS IN TERMINATION
It is common to find loops for scenario 3 in the Java libraries

\[
\text{for(int } i=0; i<m_args.length; i++)
\]

\[
m_args[i].fixupVariables(vars, globalsSize);
\]

the method \text{fixupVariables} is an abstract method.

- Make assumption that \text{fixupVariables} does not introduce a termination problem and prove termination
- For actual implementation of \text{fixupVariables}, we have to check that the local access condition holds and that it terminates.

We found many loops for scenario 1.

\[
\text{for (int } i = 0; i < \text{size}; i++)
\]

\[
\text{if (elem.equals(elementData[i])) return i;
}\]

in method \text{public int indexOf(Object elem) of the library java.util.ArrayList} and \text{size} is a field of type int.

- The implementation of \text{equals} is available and contains as unique instruction \text{return (this==obj)}
- It ensures the local field access of size and thus the loop is definitely terminating.
It is common to find loops for scenario 3 in the Java libraries

```java
for(int i=0; i<m_args.length; i++)
    m_args[i].fixupVariables(vars, globalsSize);
```

the method `fixupVariables` is an abstract method.
- Make assumption that `fixupVariables` does not introduce a termination problem and prove termination
- For actual implementation of `fixupVariables`, we have to check that the local access condition holds and that it terminates.

We found many loops for scenario 1.

```java
for (int i = 0; i < size; i++)
    if (elem.equals(elementData[i])) return i;
```

in method `public int indexOf(Object elem)` of the library `java.util.ArrayList` and `size` is a field of type `int`.
- The implementation of `equals` is available and contains as unique instruction `return (this==obj)`
- It ensures the local field access of `size` and thus the loop is definitely terminating.

It is rare in the libraries to find loops for scenario 2
Conclusions & Perspectives

- State-of-the-practice in termination analysis moving beyond less-widely used programming languages to realistic object-oriented languages

- This work draws attention to some difficulties that need to be solved to support fields in termination analysis

- Motivated by examples found in the Java libraries, we have proposed some syntactic techniques towards dealing with numeric fields in a practical manner

Elvira Albert

Numeric Fields in Termination
State-of-the-practice in termination analysis moving beyond less-widely used programming languages to realistic object-oriented languages

This work draws attention to some difficulties that need to be solved to support fields in termination analysis.

Motivated by examples found in the Java libraries, we have proposed some syntactic techniques towards dealing with numeric fields in a practical manner.

Perspectives: apply termination tools on realistic programs which use libraries is challenge due to many dependencies.

By using precomputed annotations, the analyzer can safely assume the termination of those annotated methods in the Java libraries (and those that they depend upon).
Costa: COSt and Termination Analyzer which works directly on the bytecode (no knowledge about the Java).
- Termination module based on techniques in FMOODS’08
- Cost module based on the method in ESOP’07

Enhance **Costa** with the ideas presented here

Tool demonstration of **Costa** at ECOOP08

(Wednesday at 16.15)
(Thursday at 10.45)