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� Free software (GNU LGPL license).
� Designed to be extensible and analysis-friendly .
� Support for several paradigms:

* pure (no “built-ins” ), but very powerful and extensible kernel.
* pure LP, ISO-Prolog, functions, higher-order, constraints, objects, ...
* concurrency, parallelism, distributed execution, ...

� Support for programming in the large:
* robust module/object system, separate/incremental compilation, ...
* “industry standard” performance.
* (semi-automatic) interfaces to other languages, databases, etc.
* assertion language, automatic static inference and checking, autodoc, ...

� Support for programming in the small :
* scripts, small (static/dynamic/lazy-load) executables, portability, ...

� Advanced programming environment (with, e.g., automatic access to docs).
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A Parenthesis: Why Ciao?

• Why is the system called Ciao?

• It was at some point actually an acronym:

� CIAO: A Constraint Programming Language with, Independent And + Or
parallelism.

• But the word itself represents the spirit of the system:

� Ciao is an interesting word that means both Hello and Goodbye.
� So, the connotation of “Ciao Prolog” is that:

* It is aimed at introducing programmers to Prolog
–the “Hello Prolog” part,

* but it also then goes much beyond (with CLP, FP, HO, Objects, ...)
–the “Goodbye traditional Prolog” part.
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Introduction: The Ciao Program Development System (Contd.)

• Components of the environment (independent, written in Ciao):

ciaosh: Standard top-level shell.
ciaoc: Standalone compiler.
ciao-shell: Script interpreter.
lpdoc: Documentation generator (info, ps, pdf, html, ...).
lpmake: Like make but with all Ciao behind.
ciaopp: Preprocessor (assertion checker/optimizer/parallelizer...).

+ Many libraries:

� Records (argument names).
� Persistent predicates

(automatically updated and stored in permanent media).
� Transparent interface to databases.
� Interfaces to C, Java, tcl-tk, etc.
� Distributed execution.
� Interface to current Internet standards and protocols (e.g., the PiLLoW library:

HTML, forms, http protocol, VRML generation, etc.), ...
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The Ciao Development Environment
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The Ciao Development Environment

• Provides:

� Incremental syntax highlighting of source code.
� Direct access to on-line documentation (help and completion on what the

cursor is on).
� Direct, interactive access to compiler, top-level, preprocessor, etc.
� Location of errors from compiler (and preprocessor) on source code.
� Source code debugging.
� Direct access to auto-generation of documentation.
� Menu-driven access + also keyboard shortcuts and toolbar.
� User extensible.
� Plus many other features!

• Built as a powerful extension of emacs.

• Also eclipse pluings have been developed (as contribs).

5



Ciao Prog. Environment: The Graphical Environment
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Ciao Prog. Environment: The Top Level
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Ciao Prog. Environment: Main Menu (compilation, error location, etc.)
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Ciao Program Load

• Most traditional (“Edinburgh”) program load commands can be used.

• But more modern primitives available which take into account module system.
Same commands used as in the code inside a module:

� use module/1 – for loading modules.
� ensure loaded/1 – for loading user files.
� use package/1 – for loading packages (see later).

• In summary, top-level behaves essentially like a module.

• In practice, done automatically within graphical environment :

� Open the source file in the graphical environment.
� Edit it (with syntax coloring, etc.).
� Load it by typing C-c l or using menus.
� Interact with it in top level.
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Ciao System Menu (Partial)

(Re)Start Ciao top level (C-c t)

(Re)Load buffer into top level (C-c l)

(Re)Load and check buffer into top level (C-c f)

(Re)Load main and related modules (C-c L)

Make executable from buffer as main (C-c x)

Go to (next) preproc/compiler error msg (C-c ‘)

Remove error (and dbg) marks in buffers (C-c e)

Set default query (C-c q)

Call default query (C-c Q)

Clear default query

(Un)Set main module (C-c s)

Update syntax-based coloring

Insert script header (C-c I S)

Make object file (.po) from buffer (C-c o)

Make active module from buffer (C-c a)

10



Ciao Prog. Environment: Error Location
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Debugging in Ciao

• The traditional interface to the “Byrd–box” debugger is available:

                               descendant(Z,Y).

descendant(X,Y):- offspring(X,Z),

descendant(X,Y):- offspring(X,Y).
Exit

RedoFail

Call

+ 13 7 Call: T user:descendant(dani,_123) ?

• In addition, source-level tracking of the debugging process is supported:

� Simultaneous visualization of tracing messages and
byrd-box ports in the source code.
� Placing break-points directly on the source code.

• Debugging modes can be toggled on a per-module basis:
debug_module/1, nodebug_module/1, debug_module_source/1

• Easiest: use the Emacs environment.

• The debugger is also a library→
Debugging also available in standalone executables! (see later).
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Ciao Prog. Environment: The Source Debugger
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Ciao Debugging Menu (Partial)

(Un)Debug buffer source (C-c d)

Select debug mode (C-c m)

Select multiple buffers for debug (C-c M-m)

Set breakpoint on current literal pred symb (C-c S b)

Remove breakpoint from current literal (C-c S v)

Remove all breakpoints (C-c S n)

Redisplay breakpoints (C-c S l)

Toggle debug mode (jump to bkp or spypt) (C-c S d)

Toggle trace mode (C-c S t)

(Re)Load region (for debug) (C-c r)

(Re)Load predicate (for debug) (C-c p)
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Breakpoints

• Breakpoints are associated to literals rather than to predicates (as spypoints are).

• Spypoints trace every goal of the predicate, breakpoints only those arising from
the selected literal in the program source.

• Information associated with a breakpoint:

� File name.
� Predicate name.
� Start and end lines of the clause.
� Number of literal in the clause & actual line of the literal.

• Set/unset/list breakpoints:

� breakpt/6
� nobreakpt/6
� nobreakall/0
� list_breakpt/0

• Easiest to use from the Emacs environment.
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Using the Debugger

• Activate debugging mode (for the module) and load the code (from the file).

• Toggle debugging modes.

• Set/unset/list breakpoints.

• Plus the classical spy-points.

Everything transparent to the user within Emacs!

• Plus the usual menu commands of the tracer.

• Additionally:

� Source-debugging also useful outside Emacs:

In /home/clip/ciao/dbgex.pl (5-9) descendant-1

+ 13 7 Call: T user:descendant(dani,_123) ?

� Debugger works also in (stand-alone) compiled executables:

:- use_package(debug).
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Ciao Prog. Env.: CiaoPP (debugging, optimization, verification, ...)
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Ciao Preprocessor Menu (Partial)

Analyze buffer (C-c A)

Check buffer assertions (C-c T)

Optimize buffer (C-c O)

Browse analysis/checking/optimizing options (C-c M)

Go to (next) preproc/compiler error msg (C-c ‘)

Remove error (and dbg) marks in buffers (C-c e)

Show last preprocessor output file (C-c C-v)

Start Ciao preprocessor

18



Ciao Prog. Environment: Menu for Generating Documentation
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Ciao LPdoc Menu (Partial)

Generate documentation for buffer (C-c D B)

View documentation in selected format (C-c D V)

Change default doc format/visualizer (C-c D F)

Goto (next) preproc/compiler error msg (C-c ‘)

Remove error (and dbg) marks in buffers (C-c e)

Visit(/create) LPSETTINGS.pl file (C-c D S)

Generate documentation (C-c D G)

Set version control for file (C-c C-a)

Insert changelog entry/increase patch # (C-c C-s)

Increase version number (C-c n)

Go to next changelog entry (C-c C-n)
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Ciao Customization Menu (Partial)

Customize all Ciao environment settings

Customize all Ciao system environment settings

Set Ciao toplevel executable

Set Ciao toplevel args

Set Ciao library path

Customize all CiaoPP environment settings

Set Ciao Preprocessor executable

Set Ciao Preprocessor executable args

Customize all LPdoc environment settings

Set LPdoc executable

Set LPdoc executable args

Set LPdoc root working directory

Set LPdoc library path

Customize all Ciao colors/faces
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Ciao Help Menu (Partial)
Go to manual page for symbol under cursor (C-c TAB)

Complete symbol under cursor (C-c /)

Ciao system manual

Ciao preprocessor manual

LPdoc automatic documenter manual

Ciao manuals area in info index

List all key bindings

Ciao environment (mode) version (C-c v)
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Ciao Prog. Environment: Getting Help (on predicate under cursor)
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Ciao Prog. Environment: Accessing Manuals
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Ciao Prog. Environment: Using Autocompletion
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The Ciao Module System
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The Ciao Module System

• Ciao implements a module system [12] which meets a number of objectives:

� High extensibility in syntax and functionality:
allows having pure logic programming and many extensions.
� Makes it possible to perform modular (separate) processing of program

components (without “makefiles”).
� Greatly enhanced error detection (e.g., undefined predicates).
� Facilitates (modular) global analysis.
� Support for meta-programming and higher-order.
� Predicate based-like, but with functor/type hiding.

while at the same time providing:

� High compatibility with traditional standards (Quintus, SICStus, ...).
� Backward compatible with files which are not modules.
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Defining modules and exports

• :- module(module name, list of exports, list of packages).
Declares a module of name module name, which exports list of exports and
loads list of packages (packages are syntactic and semantic extensions).

• Example: :- module(lists, [list/1, member/2], [functions]).

• Examples of some standard uses and packages:

� :- module(module name, [exports], []).
⇒ Module uses (pure) kernel language.

� :- module(module name, [exports], [packages]).
⇒ Module uses kernel language + some packages.

� :- module(module name,[exports], [functions]).
⇒ Functional programming.

� :- module(module name,[exports],[assertions,functions]).
⇒ Assertions (types, modes, etc.) and functional programming.
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Defining modules and exports (Contd.)

• (ISO-)Prolog:

� :- module(module name, [exports], [iso]).
⇒ Iso Prolog module.
� :- module(module name,[exports], [classic]).
⇒ “Classic” Prolog module
(ISO + all other predicates that traditional Prologs offer as “built-ins”).
� Special form:
:- module(module name, [exports]).

Equivalent to:
:- module(module name, [exports], [classic]).

⇒ Provides compatibility with traditional Prolog systems.
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Defining modules and exports (Contd.)

• Useful shortcuts:

� :- module( , list of exports).
If given as “ ” module name taken from file name (default).
Example: :- module( , [list/1, member/2]). (file is lists.pl)
� :- module( , ).

If “ ” all predicates exported (useful when prototyping / experimenting).

• “User” files:

� Traditional name for files including predicates but no module declaration.
� Provided for backwards compatibility with non-modular Prolog systems.
� Not recommended: they are problematic (and, essentially, deprecated).
� Much better alternative: use :- module( , ). at top of file.

* As easy to use for quick prototyping as “user” files.
* Lots of advantages: much better error detection, compilation, optimization,

...
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Importing from another module

• Using other modules in a module:

� :- use module(filename).
Imports all predicates that filename exports.
� :- use module(filename,list of imports).

Imports predicates in list of imports from filename.
� :- ensure loaded(filename). —for loading user files (deprecated).

• When importing predicates with the same name from different modules, module
name is used to disambiguate:
:- module(main,[main/0]).

:- use_module(lists,[member/2]).

:- use_module(trees,[member/2]).

main :-

produce_list(L),

lists:member(X,L),

...
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The Ciao Module System (Contd.)

• Some more specific characteristics [12]:

� Syntax, flags, expansions, etc. are local to modules.
� Compile-time and run-time code is clearly separated

(e.g., expansion code is compile-time and does not go into executables).
� “Built-ins” are in libraries and can be loaded into and/or unloaded from the

context of a given module.
� Dynamic parts are more isolated.
� Directives are not queries.
� Richer treatment of meta-predicates and higher-order.
� The entry points to modules are statically defined.
� Module qualification used only for disambiguating predicate names.
� All module text must be available or in related parts.

• A resulting notion: packages (see later).
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Modular Compilation/Processing

• The Ciao compiler [13]:

� Uses a generic program processing framework (library).
� Can compile separately program components.
� Builds small, standalone executables.
� With different linking regimes.

• The actual compiler is a component used by:

� The stand-alone compiler (ciaoc).
� The top-level shell (ciaosh).
� Any user executable that may need to compile programs.

• It is based on a generic program-processing library which:

� Understands the module system.
� Abstracts away many functionalities common to several modular program

processing tasks.
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The Generic Code-Processing Framework

• Many program processing tools (compiler, preprocessor, documenter, ...) require:

� Reading programs into a normalized internal representation.
� Dealing with syntactic extensions in the process.
� “Understanding” the module system (imports, exports, multifiles, scope, etc.).

• We have abstracted this functionality into a library which offers:

� A normalized internal representation with line numbers, etc.
� Modular, incremental, separate, and global processing of files.
� Dependency checking (what needs to be recompiled).
� Automatic creation/update of interface/dependency (.itf) files.
� Static detection of syntax and generic module-related errors.
� Parameterizable via higher order.

• Used by the low-level (WAM) compiler, the preprocessor (global analyzers, etc),
the automatic documentation generator, and the assertion preprocessor.

• Ensures consistency among the various code-processing tools.
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The Ciao (Low-level) Compiler

• Makes use of the generic framework.

• Is itself also a library.

• This library is used by the standalone compiler (ciaoc), the top-level shell
(ciaosh) and the Prolog script interpreter (ciao-shell).

• Features:

� Global compilation/dependency-checking process.
� Creates / maintains bytecode files (.po) separately for each module/user file.
� Incrementally processes multifile-programs, (re)compiling only the files which

have changed or which are affected by changes in related files.
� Statically detects a great number of errors.
� Builds small, standalone executables.
� With different linking regimes.
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Linking Regimes of Executables, Scripts

• The compiler produces executables by collecting the bytecode (.po) files of the
program components, and linking them in a file to be loaded by the Ciao engine.
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Linking Regimes of Executables, Scripts

• The compiler produces executables by collecting the bytecode (.po) files of the
program components, and linking them in a file to be loaded by the Ciao engine.

• Modules can be linked in the executable in three ways:

� Statically: bytecode of the module added to the executable.
+When running the program, the module does not have to be available.
- Larger executables and more compilation time.
� Dynamically: bytecode loaded at startup from standard locations.
+ Smaller executable, flexibility (libraries can be updated without recompiling
executables).
- Module has to be accessible at run-time.
� Lazily: bytecode loaded when a predicate of the module is called.
+ Useful when not all capabilities of an application are used in every run.
- Not possible for every module. The compiler has to produce stump code.
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Linking Regimes of Executables, Scripts

• The compiler produces executables by collecting the bytecode (.po) files of the
program components, and linking them in a file to be loaded by the Ciao engine.

• Modules can be linked in the executable in three ways:

� Statically: bytecode of the module added to the executable.
+When running the program, the module does not have to be available.
- Larger executables and more compilation time.
� Dynamically: bytecode loaded at startup from standard locations.
+ Smaller executable, flexibility (libraries can be updated without recompiling
executables).
- Module has to be accessible at run-time.
� Lazily: bytecode loaded when a predicate of the module is called.
+ Useful when not all capabilities of an application are used in every run.
- Not possible for every module. The compiler has to produce stump code.

• Executables may be compressed: smaller but (sometimes) slower startup.
• Stand-alone architecture-dependent executables may also be created.
• Scripts can also be used (hide compilation/interpretation process).
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Abstract Machine-based: Multiplatform

...
Mac Os XWindowsLinux

/usr/local/lib/ciao/engine/ciaoengine

... ......
Ciao Ciao Ciao

(Also for: Solaris Sparc, Solaris i386, Linux Sparc, SunOs, IRIX, ...)
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Packages

• Libraries defining extensions to the language.

• Made possible thanks to:

� Local nature of syntax extensions.
� Clear distinction between compile-time and run-time code.

• Typically consist of:

� A main source file to be included as part of the file using the library, with
declarations (op, new declaration, etc . . . ).
� Code needed at compile time to make translations (loaded by a
load compilation module directive).
� Code to be used at run-time (loaded using use module directives).
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Packages (Cont.)

<uses definitions in p.pl>

<compiles q.pl>

ciaoc

<code from p.pl NOT

necessarily included>

q[.po] (object or executable)

<translations for some

terms and literals>

<local operators>

p.pl
Uses at compile time

<program code with

specific syntax>

q.pl

:− module(_,_[p]).

• Examples: dcg (definite clause grammars), argnames (accessing term/predicate
arguments by name), iso (ISO-Prolog compatibility package), functions
(functional syntax), class (object oriented extension), persdb (persistent
database), assertions (to include program assertions – see [42]), . . .
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Functional Programming
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Functional Notation (A Package!)

• Function applications:

� Any term preceded by the ˜/1 operator is a function application:

write(˜arg(1, T)). arg(1, T, A), write(A).
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Functional Notation (A Package!)

• Function applications:

� Any term preceded by the ˜/1 operator is a function application:

write(˜arg(1, T)). arg(1, T, A), write(A).

� Declarations can be used to avoid the need to use the ˜/1 operator:

:- function arg/2. write(arg(1, T)).

� Also possible to use arguments other than last for “return”:

:- fun return functor(˜, , ). ˜functor(˜, f, 2).

� The following declaration combines the previous two:

:- function functor(˜, , ).
:- fun return functor(˜, , ).

:- function functor/2.
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Functional Notation (II)

• Several functors are evaluable by default:

� Special forms for disjunctive and conditional expressions: |/2 and ?/2 .

* A | B | C
* Cond1 ? V1
* Cond1 ? V1 | V2

Precedence implies that: Cond1 ? V1 | Cond2 ? V2 | V3

is parsed as: Cond1 ? V1 | (Cond2 ? V2 | V3)

� All the functors understood by is/2, if the following declaration is used:

:- fun_eval arith(true).

Using false it can be (selectively) disabled.
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Functional Notation (III)

• Functional definitions:

� Defining function F/N implies defining predicate F/(N+1).
opposite(red) := green. ≡ opposite(red,green).

addlast(X,L) := ˜append(L,[X]). ≡ addlast(X,L,R) :- append(L,[X],R).

� The last argument of the predicate is assumed by default to hold the “result” of
the function.
� No run-time slow down for functions.
� Can also have a body (serves as a guard or as where):
fact(0) := 1.

fact(N) := N * ˜fact(--N) :- N > 0.

• The translation:

� Produces steadfast predicates (bindings after cuts).
� Maintains tail recursion.
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Functional Notation (IV)

• The declaration :- fun_eval defined(true).
allows dropping the ˜ within a function’s definition:

fact(0) := 1.

fact(N) := N * fact(--N) :- N > 0.

And, using conditional expressions:

fac(N) := N = 0 ? 1

| N > 0 ? N * fac(--N).
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Deriv and its Translation

der(x) := 1.

der(C) := 0 :- number(C).

der(A + B) := der(A) + der(B).

der(C * A) := C * der(A) :- number(C).

der(x ** N) := N * x ** ˜(N - 1) :- integer(N), N > 0.

der(x, 1).

der(C, 0) :-

number(C).

der(A + B, X + Y) :-

der(A, X), der(B, Y).

der(C * A, C * X) :-

number(C), der(A, X).

der(x ** N, N * x ** N1) :-

integer(N), N > 0, N1 is N - 1.
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Examples – Sugar for Append

• Some syntactic sugar for append:

:- fun_eval append/2.

mystring(X) := append("Hello",append(X,"world!")).

• Some more:

:- op(600, xfy, (.)).

:- op(650, xfy, (++)).

:- fun_eval (++)/2.

[] ++ L := L.

X.Xs ++ L := X.(Xs ++ L).

mystring(X) := "Hello" ++ X ++ "world!".
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Functional Notation (V)

• Quoting. Evaluable functors can be prevented from being evaluated:

pair(A,B) := ˆ(A-B).

• Scoping. When innermost function application is not desired (e.g., for certain
meta-predicates) a different scope can be determined with the (ˆˆ)/1 operator:

findall(X, (d(Y), ˆˆ(X = ˜f(Y)+1)), L).

translates to: findall(X, (d(Y),f(Y,Z),T is Z+1,X=T), L).
as opposed to: f(Y,Z), T is Z+1, findall(X, (d(Y),X=T), L).

• Laziness. Execution is suspended until the return value is needed:

:- lazy fun_eval nums_from/1.

nums_from(X) := [X | nums_from(X+1)].

(Can be done easily with when, block, freeze, etc. but proposed notation more
compact for this special case. Also, :- lazy pred_name/M.)
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Functional Notation (VI)

• Functional notation really useful, e.g., to write regular types in a compact way:

color := red | blue | green.

list := [] | [ _ | list].

list_of(T) := [] | [˜T | list_of(T)].

Which translate to:

color(red). color(blue). color(green).

list([]).

list([_|T]) :- list(T).

list_of(_, []).

list_of(T, [X|Xs]) :- T(X), list_of(T, Xs).

And can then of course be used in Ciao assertions:

:- pred append/3 :: list * list * list.

:- pred color_value/2 :: list(color) * int.
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Examples – Array Access Syntax

:- module(arrays_rt,_,[functional,hiord,assertions,regtypes,isomodes]).

:- pred fixed_array(Dim,Array) :: dim * array

# "@var{Array} is an array of fixed dimensions @var{Dim}.".

fixed_array([N|Ms],A):- functor(A,a,N), rows(N,Ms,A).

fixed_array([N], A):- functor(A,a,N).

rows(0,_Ms,_A).

rows(N,Ms,A):- N > 0, arg(N,A,Arg), fixed_array(Ms,Arg), rows(N-1,Ms,A).

:- regtype dim(D) # "@var{D} represents the dimensions of an array.".

dim(D) :- list(D,int).

:- regtype vector(V) # "@var{V} is a one-dimensional fixed-size array.".

vector(V) :- fixed_array([N],V), int(N).

• E.g., for for 2x2: A = a(a(_,_),a(_,_)).
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Examples – Array Access Syntax (Contd.)

• We can define array access (with some syntactic sugar), also in file arrays_rt as
follows:

:- include(arrays_ops).

:- pred @(Array,Index,Elem):: array * dim * int

# "@var{Elem} is the @var{Index}-th element of @var{Array}.".

V@[I] := ˜arg(I,V).

V@[I|Js] := ˜arg(I,V)@Js.

• Where file arrays_ops (meant to be used by both arrays_rt and applications
that use the syntax that we are defining, contains:

:- use_package(functional).

:- op(150,xfx,[@]). :- fun_eval ’@’/2.

:- op(500,yfx,<+>). :- fun_eval ’<+>’/2.

:- op(400,yfx,<*>). :- fun_eval ’<*>’/2.
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Examples – Array Access Syntax (Contd.)

• And we can define, e.g., vector addition as:

:- pred <+>(V1,V2,V3) :: vector * vector * vector

# "@var{V3} is @var{V1} + @var{V2}.".

V1 <+> V2 := V3 :-

V1 = ˜fixed_array([N]), V2 = ˜fixed_array([N]),

V3 = ˜fixed_array([N]), V3 = ˜vecplus(N,V1,V2).

vecplus(0,_,_,_).

vecplus(N,V1,V2,V3) :- N > 0,

V3@[N] = V1@[N] + V2@[N],

vecplus(N-1,V1,V2,V3).
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Examples – Array Access Syntax (Contd.)

• If we define an arrays.pl header file as follows:

:- include(arrays_ops).

:- use_module(arrays_rt).

• This new package then be used, e.g., as follows:

:- module(_,_).

:- include(arrays).

main(M) :-

V1 = a(1,3,4,5), V2 = a(5,4,3,1), I = 1,

display(V2@[I+1]), % Access a given element.

M = V1 <*> ( V2 <+> V1 ). % Operations on vectors.
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Combining with Constraints, etc.

• Combining with constraints, some syntactic sugar, assertions:

:- module(_,_,[assertions,fsyntax,clpq]).

:- fun_eval .=. /1.

:- op(700,fx,[.=.]).

:- fun_eval fact/1.

:- pred fact(+int,-int) + is_det.

:- pred fact(-int,-int) + non_det.

fact( .=. 0) := 1.

fact(N) := .=. N*fact( .=. N-1 ) :- N .>. 0.

• Sample query:

?- 24 = ˜fact(X).

X = 4
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Functional Notation (VII)

• Definition of “real” functions: :- funct name/N.

adds pruning operators and Ciao assertions to add functional restrictions:
determinacy, modedness, etc.

• E.g.:

:- funct nrev/1.

nrev( [] ) := [].

nrev( [H|T] ) := ˜conc( nrev(T),[H] ).

Is translated to (simplified):

:- pred nrev(A,B,C)

: (ground(A), ground(B), var(C))

=> (ground(A), ground(B), ground(C))

+ is_det,mut_exclusive,covered,no_fail.

nrev( [], Y ) :- !, Y = [].

nrev( [H|L],R ) :- !, nrev(L,RL), conc(RL,[H],R).
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Some Implementation Details

• All syntactic effects are local to the modules that use these packages
(as usual in Ciao).

• Functional features provided by Ciao packages:

� A first set provides the bare function features without lazy evaluation,
* Package fsyntax:

uses fun_eval arith(false) and fun_eval defined(false).
* Package functional:

uses fun_eval arith(true) and fun_eval defined(true). Also, ./2 as
infix operator and ++/2 as infix function append are defined by default.

� An additional one provides the lazy evaluation features.

• Functional features are implemented by translation using the well-known
technique of adding a goal for each function application.
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Some Implementation Details

• Translation of a lazy function into a predicate is done in two steps:

� First, the function is converted into a predicate by the standard functions
package.
� The predicate is then transformed to suspend its execution until the value of

the output variable is needed, by means of the freeze/2 or block family of
control primitives.

• ( For freeze/2 the translation will rename the original predicate to an internal
name and add a bridge predicate with the original name which invokes the
internal predicate through a call to freeze/1. )

56



Example of Lazy Functions and Translation (stylized)

:- lazy function fiblist/0.

fiblist := [0, 1 | ˜zipWith(add, FibL, ˜tail(FibL))]

:- FibL = fiblist.

:- lazy fiblist/1.

fiblist([0, 1 | Rest]) :-

fiblist(FibL),

tail(FibL, T),

zipWith(add, FibL, T, Rest).

fiblist(X) :-

freeze(X, ’fiblist_$$lazy$$’(X)).

’fiblist_$$lazy$$’([0, 1 | Rest]) :-

fiblist(FibL),

tail(FibL, T),

zipWith(add, FibL, T, Rest).
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Higher Order
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Support for Higher-Order Programming

• HO programming can be supported in Prolog via meta-programming (=..,
call/1, etc.).

• Ciao provides in addition “native” HO programming (semantically cleaner), and
useful syntactic extensions (e.g., the hiord package):

� A family of call/N builtins is provided which allow the first argument of a call to
call/N to be instantiated to:
* A higher-order term (supporting currying), e.g.: member(3)
* A “predicate abstraction”: (’’(X,Y) :- Y is X+10)

(read ’’ as λ).
� Special syntax supported:
P(X,. . .) is read as call(P,X,. . .),
(X,. . .) is read as ’’(X,. . .)

� meta predicate/1 declarations are extended to reflect higher-order predicates
(pred(N)).
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Simple Higher-Order Programming Examples

?- use_package(hiord).

?- P = <(0), P(3).

P = <(0) ?

yes

?- P = member(3), P([1,2,3]).

P = member(3) ?

yes

?- _P = member(3), _P(L).

L = [3|_] ? ;

L = [_,3|_] ?

...

?- call(member(3),L).

L = [3|_] ? ;

L = [_,3|_] ?

...
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Simple Higher-Order Programming Examples (Contd.)

?- _P=member(X), _P([1,2,3]).

X = 1 ? ;

X = 2 ?

...

?- P = ( _(X,Y):- Y is X+10 ), P(2,R).

P = (’’(X,Y):-Y is X+10),

R = 12 ?

yes

?- call(( _(X,Y):- Y is X+10 ), 2, R).

R = 12 ?

yes

?-
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Extended Meta-Predicate Declarations for HO Programming

A meta-predicate specification for a predicate is the functor of that predicate applied
to atoms which represent the kind of module expansion that should be done with the
arguments. Possible contents are represented as:

goal Argument will be a term denoting a goal which will be called. For compatibility
‘:’ can be used as well.

pred(N ) This argument will be a predicate construct to be called by means of
call/N.

clause This argument will be a term denoting a clause.

fact This argument will be a term denoting a fact.

spec This argument will be a predicate name (Functor/Arity ).

?,+,-, These other values denote that this argument is not module expanded.
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Simple Higher-Order Programming Examples (Contd.)

• Example, parametric list regular type:
:- use_package([assertions ,regtypes,hiord]).

:- regtype lst(T, L) # "@var{L} is a list of @var{T}s.".

:- meta_predicate lst(pred(1), ?).

lst(_, []).

lst(T, [X|Xs]) :-

T(X),

lst(T, Xs).

• Examples:

� lst(atom, L) checks that a term L is a list of atoms.
� lst(lst(atom),L) checks that a term L is a list of lists of atoms.
� lst((_(X):-write(X), nl), L) writes all the elements of L (!).
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Simple Higher-Order Programming Examples (Contd.)

• Example, map/3 (see library hiordlib, maplist/3):
:- module(_,_,[hiord]).

:- meta_predicate map(?,pred(2),?).

map([], _, []).

map([X|Xs], P, [Y|Ys]) :-

P(X,Y),

map(Xs,P,Ys).

• Examples of use of map/3:
?- map([[3,1,2],[c,a,b]],sort,L).

L = [[1,2,3],[a,b,c]] ?

?- map([1,3,2], (’’(X,Y) :- arg(X,f(a,b,c,d),Y)), R).

R = [a,c,b] ?

?- map([X,Y],member,[[1,2],[a,b]]).

X = 1, Y = a ? ;

X = 1, Y = b ? ;

X = 2, Y = a ? ;

X = 2, Y = b ?
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Combining Higher-Order with Functional Notation

• They can be combined, resulting in essentially functional-style code
(but sometimes with additional modes of use of course!).

• Combining function application (˜) and HO:

� Predicate application ⇒ Function application
..., P(X,Y), ... ⇒ ..., Y = ˜P(X), ...

• Function abstraction (only in later versions of Ciao):

� Predicate abstraction ⇒ Function abstraction
{’’(X,Y) :- p(X,Z), q(Z,Y)} ⇒ {’’(X) := ˜q(˜p(X))}
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Combining Higher-Order with Functional Notation

• Some common examples:
:- meta_predicate map(_,pred(2),_).

map([], _) := [].

map([X|Xs], P) := [˜P(X)|˜map(Xs,P)].

:- meta_predicate foldl(_,_,pred(3),_).

foldl([], Seed, _Op) := Seed.

foldl([X|Xs], Seed, Op) := ˜Op(X,˜foldl(Xs,Seed,Op)).

• More uses of map/3 (using functional notation):
?- L = ˜map([1,2,3], ( ’’(X,Y):- Y = f(X) ) ).

L = [f(1),f(2),f(3)]

?- [f(1),f(2),f(3)] = ˜map(L, ( ’’(X,f(X)) :- true ) ).

L = [1,2,3]

?- foldl([1,2,3],10,(’’(X,Y,Z) :- Z is X+Y),R).

R = 16
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Alternative Computation Rules
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Using Other Computation (Search) Rules

• Libraries which replace the default depth-first, left to right computation rule of
Ciao (and Prolog).

• Compile-time transformations (“Compiling Control” techniques).

• Useful in search problems when a complete proof procedure is needed.
(e.g., for teaching pure logic programming!)

• Computation rules currently implemented:

� Breadth-first (sr/bf and sr/bfall packages).
� Iterative-deepening (id package).
� Depth-First search with limited depth (id package).
� Fuzzy LP. Mycin.
� “And-fair” breadth-first (sr/af package).
� Tabling.
� Andorra (deterministic-first).

• pure package + sr/bf (or id etc.) ideal for first steps in teaching LP!
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Breadth-First

• Use package bf (sr/bf).

• Predicates written with the operator ‘<-’ are executed using breadth-first search.

• Normal predicates and breadth-first predicates can be freely mixed in the same
module.

• The sr/bfall package makes all predicates in a module be executed
breadth-first (in this case it is necessary to write rules and facts using <-, i.e.,
standard syntax can be used.

• The sr/af version ensures “and-fairness” by goal shuffling.
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Breadth-First Example I

:- module(chain, [test/1], [sr/bf]).

test(df) :- chain(a,d). % Loops with usual depth first rule

test(bf) :- bfchain(a,d).

bfchain(X,X) <- .

bfchain(X,Y) <- arc(X,Z), bfchain(Z,Y).

chain(X,X).

chain(X,Y):- arc(X,Z), chain(Z,Y).

arc(a,b). arc(a,d).

arc(b,c). arc(c,a).
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Breadth-First Example II

:- module(chain_bfall, _, [sr/bfall]).

test :- chain(a,d).

chain(X,X).

chain(X,Y) :- arc(X,Z), chain(Z,Y).

arc(a,b).

arc(a,d).

arc(b,c).

arc(c,a).
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Breadth-First Example III

:- module(sublist, [test/1], [sr/af]).

test(df) :- sublist_df([a],[b]). % loops with depth first rule.

test(bf) :- sublist_bf([a],[b]). % loops with normal breadth-first

sublist_df(S,L) :- append(_,S,Y), append(Y,_,L).

sublist_bf(S,L) <- append(_,S,Y), append(Y,_,L).

append([], L, L) <- .

append([X|Xs], L, [X|Ys]) <- append(Xs, L, Ys).
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Iterative-Deepening

• Modules can be marked to have iterative deepening behavior.

• A directive sets the initial depth, the predicate that computes the increment, and,
optionally, a maximum depth.
Examples:

:- iterative(p/1,5,f). % to start with depth 5 and increment by 10

f(X,Y) :- Y is X + 10.

% or, using predicate abstactions

:- iterative(p/1,5,(_(X,Y):- Y is X + 10)).

:- iterative(p/1,5,(_(X,Y):- Y is X + 10),100). % All goals below

% 100 simply fail

• Bounded depth-first can be done by one-step iterative-deepening:

:- iterative(p/1,100,f,100).
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Constraint Programming
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Constraints

• Current packages: clpq and clpr.
Based on Holzbaur’s implementation [33, 32] using attributed variables.

• (Also limited support for finite domains –fd package.)

• The effect of loading clpq or clpr is local to a module.

• CLP(Q) is exact, CLP(R) is (obviously) approximate.

• Constraints must be written using special operators: X .=. Y+Z, X .=<. 2*Y

• Linear equations are checked for satisfiability immediately, nonlinear equations
are delayed until they become linear.

• The packages are also usable directly in the toplevel:

?- use_package(clpq).

{ some messages }

?- X*Y .>. Z, X+2*Y .=. 10, X .=. Y/3.

X = 10/7, Y = 30/7, Z.<.300/49 ?

• Other constraint domains (e.g., finite domains) in development.
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CLP example

• Fibonacci relation:

fib(0, 0).

fib(1, 1).

fib(N, F) :-

N .>. 0,

N1 .=. N - 1,

N2 .=. N - 2,

F .=. F1 + F2,

fib(N1, F1),

fib(N2, F2).
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CLP example

• Fibonacci relation:

fib(0, 0).

fib(1, 1).

fib(N, F) :-

N .>. 0,

N1 .=. N - 1,

N2 .=. N - 2,

F .=. F1 + F2,

fib(N1, F1),

fib(N2, F2).

• Finding fixpoints:

?- N = ˜fib(N).

N = 0 ? ;

N = 1 ? ;

N = 5 ?
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Another CLP example

• Example: placing N queens in a N*N board

queens(N, Qs) :- constrain_values(N, N, Qs), place_queens(N, Qs).

constrain_values(0, _N, []).

constrain_values(N, Range, [X|Xs]) :-

N .>. 0,

X .>. 0, X .=<. Range,

N1 .=. N - 1,

constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).

no_attack([Y|Ys], Queen, Nb) :-

Queen .<>. Y, % this line missing in the slides!!

Queen .<>. Y+Nb,

Queen .<>. Y-Nb,

Nb1 .=. Nb + 1,

no_attack(Ys, Queen, Nb1).
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Object-Oriented Programming
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Object-Oriented Features: O’Ciao

• Basic design philosophy [40]:

� Identify desired feature(s) of OOP not present or difficult to use in LP/Ciao.
� Add them in the most natural way.
� Blend object model as much as possible with existing LP/Ciao concepts and

features (e.g., the module system).

Feature OOP Correspondence in Ciao
State attributes dynamic predicates
Encapsulation classes modules
Polymorphism overloading clause selection
Instantiation objects –
Inheritance classes (reexport)

• Missing is instantiation→ use module system / dynamic predicates; add:

� Module instantiation.
� Other features (virtual methods, interfaces, inheritance, ...).
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Ciao Instantiable Modules→ Classes/Objects

• new/2: conceptually creates a dynamic “copy” of a module.
(But implemented more efficiently!)

• Effectively, implements a very useful notion of classes/objects.

• Example:

:- class(deck,[addcard/1,drawcard/1]).

:- dynamic card/2.

% initial state

card(1,hearts).

card(8,diamonds).

addcard(card(X,Y)) :- asserta(card(X,Y)).

drawcard(card(X,Y)) :- retract(card(X,Y)).

:- module(main,[main/0],[objects]).

:- use_class(deck).

main :-

S1 new deck,

S2 new deck,

S1:drawcard(C),

S2:addcard(C).

80



Ciao Instantiable Modules→ Classes/Objects (Contd.)

• Same calling syntax as for the module system.

• Visibility controlled by the same rules as in the module system.

• Object state is represented by the state of the dynamic predicates.

• Similar capabilities to other designs (e.g., SICStus objects, Logtalk, ...).
But those are typically unrelated to the module structure.

• O’Ciao adds a number of features:

� Inheritance (based on the module system reexport capabilities + syntactic
sugar).
� Overriding: just export new predicate with other name.
� Abstract methods (e.g., virtual declarations).
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O’Ciao: Defining Classes

• The module declaration is replaced by a class declaration.
:- class(stack). ≡ :- module(stack,[],[class]).

• Predicates are interpreted as (instance) methods.

• The usual export declarations define the public interface of the class: the visible
methods for the class instances.
:- export(push/1).

:- export(pop/1).

or
:- class(stack,[push/1,pop/1]).

• The dynamic and data declarations are the attribute declarations.
:- dynamic storage/1.

or
:- data storage/1.

• Attributes are easily initialized by writing facts for them.
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Another Example of a Class

:- class(stack,[push/1,pop/1,top/1,is_empty/0]).

% Attribute

:- data storage/1.

% Methods

push(Item) :- asserta_fact(storage(Item)).

pop(Item) :- retract_fact(storage(Item)).

top(Top) :- storage(Top), !.

is_empty :- \+ storage(_).
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O’Ciao: Using Classes

• The objects package enables creating and using objects from imported classes:

:- use_package(objects).

• The use module declaration is replaced by a use class declaration.

:- use_class(stack).

• The new operator enabled by the objects package allows instance creation.

...:- ..., X new stack, ...

• Object identified by “instance qualification”
(resembling module qualification)

..., X:push(Item), ...
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O’Ciao: Other Features

• Inheritance:

� Obtained via extension of the reexport capabilities of the module system.
� Some syntactic sugar provided (inheritable/1, inherit class/1).

• Overriding:

� Inherited methods overridden by new predicate declaration for them in the
subclass.
� self/1.
� Follows also module system conventions.

• Abstract methods (virtual declarations), refinement.

• Interfaces used to simulate multiple inheritance (as in Java).
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Other Extensions
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Records package (named arguments)

• Provides named access to arguments of terms and literals.

• Example:

:- use_package(argnames).

:- argnames person(name, age, profession).

p(person${}).

q(person${age=> 25}).

r(person${name=> D, profession=>prof(D),age=>age(D)}).

s(person${age=>t(25), name=> daniel}).

Translates to:

p(person(_,_,_)).

q(person(_,25,_)).

r(person(A,age(A),prof(A))).

s(person(daniel,t(25),_)).

• Can add an argument to a predicate globally by simply adding in :- argnames!
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Persistent Predicates

• Persistent Predicate [21, 7]: dynamic predicate residing in non-volatile media.

• Its state survives across successive executions of the application.

• Usage transparent to the storage media, and similar to normal data (dynamic)
predicates.

• Changes to the persistent predicates are recorded atomically and transactionally:

� Security against possible data loss due to, for example, a system crash.
� Allows concurrent updates from different programs.

• Update primitives similar to assert/1 and retract/1.

• Transactional behavior.

• Currently supported storage media:

� Files: persdb package.
� SQL database: persdb sql package.
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Persistent Predicates Example I

• Example: persistent queue.

persistent_dir(queue_dir,’./DB’).

:- persistent(queue/1, queue_dir).

main:- write(’Action ( in(Term). | out. | halt. ): ’),

read(A),

( handle_action(A) -> true ; write(’Unknown command.’), nl ),

main.

handle_action(halt) :- halt.

handle_action(in(Term)) :- passertz_fact(queue(Term)), main.

handle_action(out) :-

( pretract_fact(queue(Term))

-> write(’Out ’), write(Term)

; write(’FIFO empty.’) ),

nl, main.
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Persistent Predicates Example II
• Example: program configuration

files, which need to be read and
written for every run (e.g.,
˜/.XXXrc files).

• Not a difficult problem, but
certainly a hassle.

• Normally manual handling
(read/parse/write) of the file.

Program

...

user = read_user_name(conf_file);

printf("Hello, %s\n", user);

Configuration file

username: XXXX

Read

Write (if changes)

...

Configuration file

:− persistent user/1.

format("Hello, ~s~n", [UserName]),

user(UserName),

Program

Read / write automatic!

• Alternitive: use persistent facts.

• State that the facts will live in, e.g.,
˜/.XXXrc.

• Access is automatic and update as
simple as using assert and retract.
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Concurrency and Distribution
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Basic Concurrency

• (Low-level) Concurrency in Ciao is currently provided [15] by two sets of
primitives:

� Primitives to spawn and control independent execution threads.
� Primitives to synchronize and share information among threads.

• Spawning-related primitives provide basic control on threads.

• Threads are flat: they offer a basic mechanism on top of which more involved
formalisms (e.g., concurrent objects) are built.

• Communication/synchronization implemented through accesses to the shared
database:

� Predicates declared concurrent have a special regime access: calls suspend
instead of failing if no matching clause exists at the time of the call.
� Backtracking can take place after suspension.
� All accesses and updates are atomic.
� Other primitives can change the behavior of concurrent predicates at runtime.
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A Simple Example

• Start several predicates which wait for a fact to appear.

:- concurrent proceed/1.

waitf:-

retract_fact(proceed(X)),

display(proceeding(X)),

nl.

wait_facts:-

eng_call(waitf, create, create),

eng_call(waitf, create, create),

eng_call(waitf, create, create),

asserta_fact(proceed(1)),

asserta_fact(proceed(2)),

asserta_fact(proceed(3)).

• The concurrent/1 directive instructs the compiler to mark proceed/1 as a
concurrent predicate: calls will suspend if needed.

• wait facts/0 starts three threads in separate stack sets (create parameter).

• Each of them will atomically wait for and retract a clause of the predicate.

• Threads are executed in parallel when using a multiprocessor machine.
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A Threaded TCP/IP-based Server

• Will wait for a connection, read two numbers, add them, and return the result
(several handle conn/0 have been previously started).

:- concurrent conn/1.

wait_for_queries(Socket):-

repeat,

socket_accept(Socket, Stream),

assertz_fact(conn(Stream)),

fail.

handle_conn:-

retract_fact(conn(Stream)),

read(Stream, Number1),

read(Stream, Number2),

Result is Number1 + Number2,

write(Stream, Result),

close(Stream),

fail.

• The main loop listens on a port and asserts stream ids as connections arrive.

• Each handle conn/0 waits for a conn/1 to appear; it gets a Stream from which
numbers to add are read.

• It fails after the answer is returned −→ goes back to waiting for a new conn/1!
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Higher-Level Concurrency Primitives

• eng call/3 (and others to, e.g., perform backtracking on concurrent goals) are
often too low level.

• Better primitives are built on top of them (see [22, 10] for other primitives):

� Goal &> Handle executes Goal in a separate environment, leaves a Handle
pointing to the computation.
� Handle <& waits (if necessary) for the end of the computation and installs the

bindings locally.
� Communication transparently implemented through the shared database.

• A library implementing these operators allows the programmer to write concurrent
code with arbitrary explicit dependencies:

concurr:- a &> Ha, b &> Hb, c &> Hc,

..., Hb <&, ..., Ha <&, ..., Hc <&, ...
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Higher-Level Concurrency Primitives (Contd.)

• A library implementing them allows writing concurrent code such as:

sort([X|Xs], Sorted):-

partition(Xs, X, Big, Small),

sort(Big,B) &> H,

sort(Small,S),

H <&, append(S, [X|B], Sorted).

• And also, as a particular case, the library implements the good, old fork and join
of &-Prolog:

sort([X|Xs], Sorted):-

partition(Xs, X, Big, Small),

sort(Big,B) &

sort(Small,S),

append(S, [X|B], Sorted).

96



Distributed Execution

• It is very easy for example to write a server which listens on a port for goals and
executes them [10] (recall the TCP/IP-based server):
:- concurrent conn/1.

wait_for_queries(Socket):-

repeat,

socket_accept(Socket, Stream),

assertz_fact(conn(Stream)),

fail.

handle_query:-

retract_fact(conn(Stream)),

read(Stream, Goal),

call(Goal),

write(Stream, Goal),

close(Stream),

fail.

• This is a simple implementation of a goal server for distributed execution:

� Clients connect to a server and send goals, keeping a local handle.
� The server reads and executes the goals.
� Clients, when needed, ask for answers.
� Bindings are sent back with each answer, and are locally installed using logical

variables stored in the handle.
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Distributed Execution (Contd.)

• A more complete server implies a more complex negotiation: a unique identifier
per remote goal, remote backtracking, remote cut. . .

• We use the syntax of [10] (extension of the high-level concurrency primitives).

• From the client point of view:

p(...):- ..., r(X) @ Host > Handle, ..., Handle <&, ...

• Handle encapsulates:

� The initial Goal (including logical variables),
� the Host we want to execute our work,
� a unique identifier for the communication.

• Extensions: active objects, code, and computation mobility:

� Creation and remote invocation: Obj new class @ Host, Obj:method(Arg).
� Also mobility: Obj @ NewHost.
� Ongoing work [16].
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Active Modules / Active Objects

• Modules to which computational resources are attached.

• High-level model of client-server interaction.

• An active module is a network-wide server for the predicates it exports.

• Any module or application can be converted into an “active module” (active object)
by compiling it in a special way (creates an executable with a top-level listener).

• Procedures can be imported from remote “active modules” via a simple
declaration: E.g. :- use active module(Name, [P1/N1, P2/N2,...]).

• Calls to such imported procedures are executed remotely in a transparent way.

• Typical application: client-server. Client imports module which exports the
functionality provided by server. Access is transparent from then on.

• Built as an abstraction on top of ports/sockets
(also a free library for SICStus and other systems).
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Using Active Modules: An Example

• Server code (active module), file database.pl:

:- module(database, [stock/2]).

stock(p1, 23).

stock(p2, 45).

stock(p3, 12).

• Compilation: “ciaoc -a address publishing method database” or:

?- make_actmod(’/home/clip/public_html/demo/pillow/database.pl’,

’actmods/filebased_publish’).

produces executable called database.

• Active module started as a process – e.g., in Unix:
database &
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Using Active Modules: An Example

• Client (file sales.pl):

:- module(sales,[need_to_order/1],[actmods]).

:- use_active_module(database, [stock/2]).

:- use_module(library(’actmods/filebased_locate’)).

need_to_order(P) :-

stock(P, S),

S < 20.

• Usage:
?- use module(sales).

?- need to order(X).
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Active Objects, Code, and Computation Mobility

• Code mobility is easy: code just a set of terms or string of bytecode.

• Migrating active computations is heavy from an implementation point of view:
need to stop the engine, save state, reinstall O.S.-dependent data structures. . .

• Easy in continuation-based systems as BinProlog (but they have other problems).

• Migrating objects makes sense: they have local state.

• State of Ciao objects: set of facts −→ set of terms.

• Objects can be transparently put in a blocked state by the object server : do not
accept new invocations, keep track of the finished operations.

• Moving objects can performed by:

� Blocking the object.
� Sending static code (if needed) to target host + its state (dynamic code).
� Notifying those which may want to connect to the object the new location.

• Several algorithms possible for the last point: work in progress in this area.
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Web Programming
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Web Programming

• The PiLLoW library simplifies the process of writing Internet and WWW
applications [9, 11, 8].

• Provides facilities for:

� Generating HTML/XML structured documents by handling them as Herbrand
terms (bidirectional syntax conversion).
� Writing CGI executables.
� Producing HTML forms.
� Writing form handlers: form data parsing.
� Accessing and parsing WWW documents.
� Using HTML templates.
� Handling cookies.
� Accessing code posted at HTTP addresses.

• See specific tutorial on the PiLLoW system.
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Form Producer/Handler Example

main(_) :-

get_form_input(Input),

get_form_value(Input,person_name,Name),

response(Name,Response),

file_to_string(’html_template.html’, Contents),

html_template(Contents, HTML_terms, [response = Response]),

output_html([cgi_reply|HTML_terms]).

response(Name, []) :- form_empty_value(Name), !.

response(Name, [’Phone number for ’,b(Name),’ is ’,Info, --]) :-

phone(Name,Info), !.

response(Name, [’No phone number available for ’,b(Name), ’.’, --]).

%% Database

phone(’Hanna’, ’613 460 069’).

(...)
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Support for Auto-Documentation (LPdoc)
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LPdoc: the Ciao Automatic Documentation System

• Writing and, specially, maintaining program documentation is hard
→ automate process as much as possible.

• Objectives:

� Keep documentation close to source
(easy to keep in sync with the program – “Literate Programming”).
� Be able to reuse typical program documentation.
� Integrate closely with assertion language used in debugging/verification.
� Produce useful documentation even if no comments or assertions in program.
� Integrate in program development environment (e.g., version control system).
� Allow complex manuals (indices, images, citations from BiBTeX dbs, etc.).
� Support many output formats.
� Perform several related tasks (e.g., construction of distribution sites).
� Allow text reuse in multiple places (e.g., manuals, readmes, distribution sites,

lists of manuals and sw packages, announcements, installation scripts, ...)
� Be largely (CLP) platform-independent and modular.
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LPdoc Overall operation

...

lpdoc
Installation scripts

Index entries

WWW & info sites

User files

Sys. files

Main.pl

CompN.pl

SETTINGS Manuals, Readmes,...

Code + Assertions

css, templ,

texinfo

dvi, ps

pdf

hml

man

ascii, ...

info

Comp1.pl

• User view:

� Creating manual:
* Edit SETTINGS file
* lpdoc format (dvi, ps, html, ...)

� Viewing manual: lpdoc dviview, lpdoc htmlview, ...
� Installing manual: lpdoc install
� + cleanup, etc.
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LPdoc Inputs

• Basic types of input files:

� Files to be documented (possibly including assertions and comments).
� Used but not documented (library) files

(e.g., system and user libraries: types, properties, reexports, etc.).
� SETTINGS, template files, HTML style (css files), etc.

• SETTINGS:

� Determines main file and components.
� Defines the paths to be used to find files (independent of the paths used by

the LPdoc application itself).
� Selects indices (predicates, ops, declarations, properties, types, libraries,

concepts, authors, ...), options, etc.
� Selects location of BiBTeX file(s), HTML styles, etc.
� Defines installation location, etc.
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Assertions

• Assertions:

� Written in the Ciao assertion language [42].
� Declarations, used to:

* state general properties, types, modes, exceptions, ...
* of certain program points, predicate usages, ....

� Includes standard compiler directives (dynamic, meta predicate, etc.).
� Have a certain qualifier: check, true, trust, ...
� Can include documentation text strings.

:- pred sort(X,Y)

: list(X) => sorted(Y)

# "@var{Y} is a sorted permutation of @var{X}.".

• Natively understood by LPdoc [23] to generate documentation (and by
CiaoPP[25]).
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Assertions (Contd.)

• Examples – pred:

:- pred qsort(X,Y) : list(X) => sorted(Y)

# "@var{Y} is a sorted permutation of @var{X}.".

• Examples – prop, regtype:

:- prop sorted(X) # "@var{X} is sorted.".

sorted([]).

sorted([_]).

sorted([X,Y|R]) :- X < Y, sorted([Y|R]).

:- regtype list(X) # "@var{X} is a list.".

list([]).

list([_|T]) :- list(T).
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Comments

• Declarations, typically containing textual comments (:- comment (old) or :- doc):
:- comment(CommentType,CommentData).

• Examples:
:- doc(title,"Complex numbers library").

:- doc(summary,"Provides an ADT for complex numbers.").

:- doc(ctimes(X,Y,Z),"@var{Z} is @var{Y} times @var{X}.").

• Markup language, close to LATEX/texinfo:

� Syntax: @command (followed by either a space or {}), or @command{body}.
� Command set kept small and somewhat generic, to be able to generate

documentation in a variety of formats.
� Names typically the same as in LATEX.
� Types of commands:

* Indexing and referencing commands.
* Formatting commands.
* Inclusion commands, etc.
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Structure of generated documents

• Overall structure:

� Single file→ simple manual without chapters.
� Multiple files:

* Main file gives title, author(s), version, summary, intro, etc.
* Other (“component”) files are chapters and appendices.

• Chapters:

� If file does not define main→ assumed library, interface (API) documented.
else→ assumed application, usage documented.
� Structure:

* Chapter title/subtitle (or file name if unavailable).
* Info on authors, version, copyright, ...
* Chapter intro.
* Interface (usage, exports, reexports, decls, ops, modules used, ...).
* Documentation for decls, preds, props, regtypes, multifiles, modedefs,...
* Bugs, changelog, appendices, ...
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Documentation of predicates, props, etc.

• If no declarations or comments:

� One line stating predicate name and arity
(useful: goes to index→ automatic location, automatic completion).
� If property or regtype: source code (often best description).

• Comments for the predicate/property/regtype...

• All assertions, described in textual form (unless stated otherwise).

• pred assertions documented as “usages”.

• Comments associated with pred assertions used to describe the usages.

• Syntactic sugar can be kept or expanded.

• The text in properties is reflected into the predicates which use such properties
(also if property is imported from another module).
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The Ciao Assertion Language
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Introduction

• Assertions have multiple uses/roles traditionally:

� Run-time checking (e.g., pre/post-cond) – general properties, ”check”.
� Compile-time checking (e.g., types) – decidable, compulsory, ”check”.
� Replacing oracles in, e.g., decl. debug. – general (decl.) properties, ”check”.
� Providing info to an optimizer (e.g., pragmas) – general properties, ”trust”.
� General comm. w/compiler (e.g., entry) – general properties, ”trust”.

• Important issue: whole system should deal safely with general, undecidable
properties, and incomplete information→ safe approximations.

• Assertion language proposed [42] suitable for all these purposes.
(When possible, keeps backwards compatibility w/ISO & popular platforms.)

• Different program development tools may use different parts of the language.
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Assertions

• Written by the user or by program processing tools.

• If written by the user they:

� Describe the intended (declarative or operational) semantics (I).
� Can also be used to guide the analyses, state convenient specializations,

declare the behaviour of external procedures, etc.

• In general they are optional.

• State properties (see later) of:

� call points to procedures (preconditions),
� success points (postconditions),
� whole executions,
� intermediate program points, etc.

• Apply to all run-time invocations of a predicate, in the current context (i.e., in the
module the predicate is in, with its declared entry points –exports, etc.).
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Properties

� Arbitrary predicates, (generally) written in the source (logic) language.
� But some conditions on them: termination, no instantiation, ...
� Some predefined in system libs, some of them “native” to an analyzer.
� Others user-defined.
� Should be visible in the module and “runnable:” they will be used also as

run-time tests! (but the property may be an approximation itself).
� Types are a special case of property (e.g., regtypes).
� But also, e.g., argument sizes, instantiation states, ...

:- regtype list/1. | :- regtype list/1.

list([]). | list := [] | [_|˜list].

list([_|Y]) :- list(Y). |__________________________________

______________________________________| :- regtype int/1 + impl_defined.

:- prop sorted/1. |__________________________________

sorted([]). | :- regtype peano_int/1.

sorted([_]). | peano_int(0).

sorted([X,Y|Z]) :- X>Y, sorted([Y|Z]).| peano_int(s(X)) :- peano_int(X).
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Basic Predicate Assertions: Success

• “Success” assertions:
:- success PredPattern => PostCond.

� Describe post-conditions of a predicate.
� PostCond is a conjunction of properties.
� Example:
:- success qsort(A,B) => ground(B).

• Restricting to a subset of calls:

:- success PredPattern : PreCond => PostCond.

� PreCond is a conjunction of properties.
� Examples:
:- success qsort(A,B) : list(A) => list(B).

:- success qsort(A,B) : (list(A),ground(A)) => (list(B),ground(B)).

• Success assertions never impose conditions on how predicates are called: they
only state the sucess state for some or all calls to the predicate (if they succeed).
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Basic Predicate Assertions: Calls

• “Calls” assertions:

:- calls PredPattern : Props.

� Describe properties of the calls to a predicate.
� Props is a conjunction of properties.
� Calls are closed i.e., the set of calls assertions covers all calls to a predicate

that can occur in the environment (module, entries) in which the predicate
appears.
� Example:

:- calls qsort(A,B) : (list(A),var(B), indep(A,B)).

120



Basic Predicate Assertions: Comp

• “Comp” assertions:

:- comp PredPattern : PreCond + CompProps.

:- comp PredPattern + CompProps.

� Describe props of the whole exection of the predicate.
� CompProps is a conjunction of computational properties

(determinacy, non-failure, cost, ...).
� Example:

:- comp qsort(A,B) : (list(A,int),var(B)) + (is det,not fails).

• Most general, but others always preferred if possible.
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Compound Predicate Assertions: Pred Assertions

• Issues in practice with previous assertions:
� Verbose in some cases: more compact notation desired.
� When writing multiple success assertions one often wants to also say that this

covers all calls (this needs an additional calls assertion).

• “Pred” assertions are convenient “macros” for this:
:- pred PredPattern [ : Pre ] [ => Post ] [ + Comp].

(Fields in [...] are optional, but at least one must be present.)

� Closed on calls: cover all uses of a predicate (they imply a calls assertion).
� Several form a conjunction (if several match→ then GLB).

• Some examples:

� :- pred qsort(X,Y) => sorted(Y).
� :- pred qsort(X,Y) : (list(X,int),var(Y)) => sorted(Y) + (is_det,not_fails).
:- pred qsort(X,Y) : (var(X),list(Y,int)) => ground(X) + not_fails.

� :- pred foo(X,Y) : (ground(X),var(Y)) => (ground(Y),X>Y) + det.
:- pred foo(X,Y) : (var(X),ground(Y)) => (ground(X),X>Y).
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Example of a Program with Assertions

:- module(qsort,[qsort/2],[assertions,regtypes]).

:- pred qsort(A,B) : list(A) => sorted(B).

qsort([],[]).

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2), qsort(L1,R1),

append(R1,[X|R2],R).

:- pred partition(A,B,C,D) : list(A).

partition([],B,[],[]).

partition([E|R],C,[E|Left1],Right):- E < C, !,

partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):- E >= C,

partition(R,C,Left,Right1).
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Example of a Program with Assertions (Cont.)

:- prop sorted/1.

sorted([]).

sorted([_]).

sorted([X,Y|L]):- X =< Y, sorted([Y|L]).

:- regtype list/1.

list([]).

list([_|L]):-

list(L).
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Same Example in mixed Logic/Functional Notation

:- module(qsort,[qsort/2],[functions,assertions,regtypes]).

:- use_module(library(lists),[append/3]).

:- pred qsort(A,B) : list(A) => sorted(B).

qsort([]) := [].

qsort([X|L]) := ˜append(qsort(L1),[X|qsort(L2)]) :- partition(L,X,L1,L2).

:- pred partition(A,B,C,D) : list(A).

partition([],_,[],[]).

partition([E|R],C,[E|Left1],Right):- E < C, !, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):- E >= C, partition(R,C,Left,Right1).

:- prop sorted/1.

sorted := [] | [_].

sorted := [X,Y|L] :- X=<Y, sorted([Y|L]).

:- regtype list/1. list := [] | [_|˜list].
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Syntactic Sugar

• Lots of syntactic sugar available (always translated to kernel format):

� Example: ’star’ notation for compactness.
:- pred p/2 : list(int) * var => list(int) * {int,positive}.

is expanded to:
:- pred p(A,B) : ( list(A,int), var(B) )

=> ( list(A,int), int(B), positive(B) ).

• All the standard Ciao syntactic sugaring can be also be used.

� Example: using functional notation for defining types:
:- regtype color/1. color := green | blue | red.

is expanded to:
:- regtype color/1.

color(green). color(blue). color(red).

Also, e.g.:
:- regtype list/1. list := [] | [_|˜list].
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Mode Definitions (’Property Macros’)

• Provide a compact way of expressing properties in assertions.

• Examples of modes (from the basic ISO modes):

:- modedef ’+’(A) : nonvar(A).

:- modedef ’-’(A) : var(A).

:- modedef ’@’(A) + not_further_inst(A).

:- modedef ’?’(_).

• Modes can be used in the argument positions of the PredPatterns of assertions.

• The following assertion:

:- pred qsort(+,-).

is expanded to:

:- pred qsort(X,Y) : nonvar(X), var(Y).
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Mode Definitions (Cont.)

• Solve the issue of clarifying the meaning of modes.

• Allow defining new modes.

• ’Understood’ by documenter (can selectively expand them or not).

• Sets of useful modes are available in the libs:

� isomodes (the ones in the standard),
� basicmodes,
� etc.

plus, of course, user-defined modes.
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Parametric Mode Definitions

• Parameters can be used in mode definitions.

• Examples of parametric modes (the compound ISO modes):

:- modedef +(A,X) : X(A).

:- modedef @(A,X) : X(A) => X(A) + not_further_inst(A).

:- modedef -(A,X) : var(A) => X(A).

:- modedef ?(A,X) :: X(A) => X(A).

• The following assertion:

:- pred qsort(+list,-list).

is expanded to:

:- pred qsort(X,Y) : list(X), var(Y) => list(Y).
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Documentation

• A documentation field can be added to all predicate assertions.

• In a # preceded field at the end of the assertion.

• A ’classical’ entry (typical of traditional Prolog code) such as:

%% qsort(+list(int),-list(int)).

%% Argument 2 is a sorted permutation of argument 1.

can be written simply as:

:- pred qsort(+list(int),-list(int))

# "Argument 2 is a sorted permutation of argument 1.".

with the advantage that it is then understood by analyzers, specialyzers,
documenters...

• A documentation-specific assertion also available (comment/2 / doc/2)
allows producing full manuals via lpdoc.

• See the lpdoc documentation for much more...
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Program Point Assertions

• Properties of program points between literals in clauses.

..., Literal, check(Cond), Literal, ...

• Example:

p(X) :- q(X,Y), check((Y>=0,list(X,int)), r(Y).
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Assertion “Status” (e.g., Compiler Output)

• Assertions can have a prefix: check, true/checked, false, trust.

• All previous assertions are “check” (i.e., this is default).

• “True/Checked” assertions: have been proved to hold.
(e.g., output from the analyzer / assertion checker).

� Example:
:- true success p(X) => ground(X).

� Also, program point output. Example:

p(X,Y):-

true(ground(X)),

q(X,Z),

true((ground(X),ground(Z))),

r(Z,Y),

true((ground(X),ground(Y),ground(Z))).
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Assertion “Status” (e.g., Compiler Output)

• Trust assertions, to guide compile:

:- trust pred is(X,Y) => (num(X),numexpr(Y)).

• Assertion status summary:

� check (default) – intended semantics, to be checked.
� true, false – actual semantics, output from compiler.
� trust – actual semantics, input from user (guiding compiler).
� checked – validation: a check that has been proved (same as a true).
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Guiding Analysis

• “Entry” assertions: describe the calls to a predicate which are external:

� In general: from outside the module or file.
� Also, from meta-predicates (possibly in the module or file).

Example:

:- entry q(X,Y) : (ground(X),var(Y)).

• Using “trust” assertions: have to be assumed to hold.
(e.g., guiding the analyzer / assertion checker).

� Example:
:- trust success p(X) => ground(X).

� Predicate, if present, still has to be analyzed.
� In some cases, results of analysis may:

* improve precision,
* or even detect errors in trust declarations.

� Very useful also for modular analysis, etc. [ESOP’96]
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Compatibilty and Instantiation

• If we say an argument “is a list of integers,” we must decide if we mean:

� “The argument is instantiated to a list of integers.”
E.g., true for [] and [1,2]; false for X, [a,2], and [X,2].
� “If any part of the argument is instantiated, this instantiation must be

compatible with the argument being a list of integers.”
E.g., true for [], [1,2], X, and [X,2]; false for [X|1], [a,2], and 1.

• We refer to this as instantiation properties vs. compatibility properties
–both are useful!

• CiaoPP allows us to write properties simply, e.g.:

intlist([]).

intlist([X|R]) :- int(X), intlist(R).

and provides the glue code to cover the two cases (inst/1 or compat/1):

� compat(X) ≈ \+ \+ call(X).
� inst(X) ≈ copy_term(X,Y), call(Y), not_further_instantiated(X,Y).
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Compatibilty and Instantiation

• Properties are understood by default as instantiation properties. E.g.

:- pred append(A,B,C) : (intlist(A),intlist(B)) => intlist(C).

means: on calls args 1 and 2 are instantiated to intlists, and arg 3 on success.

• Compatibilty can be expressed with the compat/1 meta-property:

:- pred append

: (compat(intlist(A)),compat(intlist(B)),compat(intlist(C)))

=> (compat(intlist(A)),compat(intlist(B)),compat(intlist(C))).

• The following syntactic sugar can be used to express the same as above:

:- pred append :: (intlist(A),intlist(B),intlist(C)).

i.e., a :: field in assertions can be used for compat props.
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Some Final Comments

• If in doubt about the meaning of an assertion: run the documenter!
(just push the documentation generation button while in the source file)

• Processors (analyzers, specializers, etc. ) only need to understand the basic
assertions – all syntactic sugar (including modes, star notation, functional
notation, etc.) is removed.
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The Ciao Preprocessor (CiaoPP)

138



CiaoPP: The Ciao System Preprocessor

• CiaoPP [25, 28] is a preprocessor for the standard Ciao clause-level compiler.

• Performs error detection, verification, and source-to-source transformations:

� Input: logic program (optionally w/assertions [42] & syntactic extensions).
� Output: error/warning messages + transformed logic program, with

* Results of analysis (as assertions).
* Results of static checking of assertions [26, 41] / verification.
* Certificates for Abstraction Carrying Code.
* Assertion run-time checking code.
* Optimizations (specialization, slicing, parallelization, low-level optim., etc.).

• Generic tool – can be applied to other systems.

• Underlying technology:

� Modular polyvariant abstract interpretation [6, 31].
� Modular abstract multiple specialization [44].

• See specific tutorial on the CiaoPP system.
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Other Issues
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Other Issues

• FD constraint solver.

• Full implementation of distribution [16].

• Fully transparent access to databases (bypassing schizoid DB characteristics).

• Compilation to C [36], abstract machine specialization.

• Making expansion rule order transparent.

• KUL CHR [20] supported.

• Improved delay (when, freeze, . . . ) primitives.

• Efficient constructive negation [39].

+ Many issues related to program analysis and transformation (CiaoPP).

• ...
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External Collaborations and Funding

• Ciao/CiaoPP has been developed so far in collaboration with: G. Gupta (UT
Dallas), E. Pontelli (NM State University), P. Stuckey and M. Garcı́a de la Banda
(Melbourne U.), K. Marriott (Monash U.), M. Bruynooghe, A. Mulkers,
G. Janssens, and V. Dumortier (K.U. Leuven), S. Debray (U. of Arizona),
J. Maluzynski and W. Drabent (Linkoping U.), P. Pietrzak (UPM), P. Deransart
(INRIA), J. Gallagher (Roskilde University), C. Holzbauer (Austrian Research
Institute for AI), M. Codish (Beer-Sheva), S. Genaim (Beer-Sheva/UPM), SICS,
. . .

• Ciao/CiaoPP has been supported so far in part by:

� EU/ESPRIT projects MOBIUS, ASAP, AMOS, ACCLAIM, PARFORCE,
PRINCE, DISCIPL, and RadioWeb.
� CICYT/MCYT grants IPL-D, ELLA, EDIPIA, CUBICO, and MERIT.
� ESPRIT Networks of Excellence Compulog II/IV and CoLogNet
� US/EU Fulbright collaboration grant ECCOSIC, ADELA Spanish/Italian

Integrated Action.
� Motorola Inc.
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Downloading the system(s)

• Downloading ciao, ciaopp, lpdoc, and other CLIP software:

� Standard distributions:
http://www.clip.dia.fi.upm.es/Software

� Some betas (in testing or completing documentation – ask webmaster for info)
in:
http://www.clip.dia.fi.upm.es/Software/Beta

� User’s mailing list:
ciao-users@clip.dia.fi.upm.es

Subscribe by sending a message with only subscribe in the body to
ciao-users-request@clip.dia.fi.upm.es

Mail list stored in
http://www.clip.dia.fi.upm.es/Mail/ciao-users/
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